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Motivated by the value alignment problem, which is concerned with ensuring that

an autonomous system’s behavior matches user values, this dissertation proposes that

creating socially competent mobile robots requires rethinking how success is measured

in order to align evaluation metrics with human values and to this end, proposes the

use of context-aware simulation systems and subjective human feedback.

Social robot navigation is concerned with an agent that must traverse the navi-

gable space in an environment that is shared with people. Conducting such motion

in dynamic and densely populated environments demands that a robot understands

how humans perceive its behavior and then respond appropriately. This is a challeng-

ing task as small deviations in social behavior can significantly impact how people

perceive and respond to the robot. Yet, research in social navigation often relies

on objective metrics that fail to capture these subtle social factors, leading to poli-

cies that may optimize for obvious and easily measurable metrics like efficiency, but

neglect the social aspect of how people perceive robot behaviors in terms such as

competence.

The foundation for this dissertation’s contributions is in the area of simulation. We

introduce SEAN: the Social Environment for Autonomous Navigation and its follow-

on project, SEAN 2.0, a high-visual-fidelity, extensible, and human-centric simulation

tool. SEAN allows researchers to develop, test, and compare social navigation algo-

rithms in safe, controlled environments. The contributions that my work makes in

the area of simulation are useful for researchers throughout the development lifecycle

of social navigation systems.



Building on work in simulation, this dissertation makes contributions to evaluating

social navigation systems. Fair comparison of existing and future systems allows

measurement of and future progress in the field. Critical to fair comparison is a

characterization of different social contexts during navigation because social actions

are context dependent. Inspired by social psychology, we propose a preliminary set

of “Social Situations” that characterize some contexts during social navigation. We

then conducted structured interviews with experts working to understand if there

is an overarching objective metric which can be used for fair evaluation. We found

that beyond safety, the ranking of different metrics varied by application domain.

As part of the interviews, we also asked open-ended questions. Responses to these

questions highlighted the need to incorporate subjective evaluation criteria, because

objective measures alone are insufficient to capture the nuances of the social aspects

of navigation.

Finally, with the understanding of how critical human perceptions are to the de-

velopment of social navigation policies, we study the impact of methodological choices

researchers can make when collecting human feedback. To enable this work, I led de-

velopment of the SEAN Experiment Platform (SEAN-EP), which allows researchers

to collect human-feedback using interactive, online surveys. Using SEAN-EP, we

compare the gold-standard of an interactive, in-person study with scalable online, in-

teractive surveys, and a typical video-based survey. We find that interactive method-

ologies are preferable to passive alternatives. Still, even with scalable, interactive

data collection via SEAN-EP, querying humans for their perceptions of robot behav-

ior requires a significant amount of time and effort. Therefore, we investigate whether

it is possible to predict perceptions of robot performance using machine learning in

data-limited regimes.

Collectively, the contributions of this dissertation provide a foundation for build-

ing and evaluating social navigation robots. By integrating context-aware simulation,



human-centered evaluation methodologies, and predictive models of subjective human

feedback, this work enables more systematic alignment of robot behaviors with peo-

ple’s social expectations. These contributions open the avenue for future research

identified in this dissertation, including the development of universally accepted sum-

mary metrics for social navigation success, the creation of simulation systems that

capture a richer range of human behaviors, and the incorporation of human feedback

into robot policies that learn and adapt to predicted human perceptions.
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Chapter 1

Introduction

Social robot navigation is an application area at the intersection of robotics, machine

learning, and social robotics. Unlike traditional robot navigation, which focuses pri-

marily on efficiency and collision avoidance in static or controlled environments, social

robot navigation requires robots to move through dynamic human-populated spaces

while adhering to implicit social norms and expectations. The complexity of this task

arises from several factors: the unpredictability of human movement, the need to

interpret and respond to social cues, the cultural and contextual variations in spatial

norms, and the subjective nature of what constitutes socially acceptable robot behav-

ior. While significant progress has been made in developing algorithms that perform

well in controlled environments, adapting these algorithms to dynamic social settings

requires understanding how humans perceive robot behavior and incorporating this

understanding into both the learning and evaluation processes.

The challenge of creating socially competent robots is fundamentally driven by the

value alignment problem. As described by Russell and Norvig [225], value alignment

refers to ensuring that an autonomous system’s behavior aligns with human values.

This is particularly critical in social robotics, where misalignment between robot be-

havior and human expectations can lead to rejection of the technology, regardless of

1



the technical sophistication. The value alignment problem is especially challenging

because human values are complex, context-dependent, and often difficult to formal-

ize mathematically. In social navigation, what constitutes socially acceptable robot

behavior varies based on environmental context, cultural norms, and individual pref-

erences. A robot programmed solely to minimize path length or avoid collisions may

technically accomplish its navigation goal but fail to navigate in a socially acceptable

manner, causing discomfort or confusion among humans sharing the space.

The value alignment challenge is closely related to “the tyranny of metrics” which

is a phenomenon where optimizing for the wrong metrics leads to behaviors that

are misaligned with human values. The tyranny of metrics occurs when an eval-

uation focuses on easily quantifiable objectives while neglecting harder-to-measure

qualities that ultimately matter more. In organizational contexts, this has been well-

documented where optimization for specific metrics can produce behaviors contrary

to an organization’s broader mission. For example, the pharmaceutical company

Mylan faced significant backlash over its pricing of the EpiPen, a life-saving device

for severe allergic reactions. The company’s focus on maximizing short-term profit

metrics led to price increases of over 500% between 2007 and 2016, raising the cost

from approximately $100 to over $600. This metric-driven decision, while temporar-

ily boosting financial indicators, ultimately resulted in congressional investigations,

public outrage, and lasting damage to the company’s reputation and stock value.

The tyranny of metrics in this case led Mylan to optimize for a narrow financial mea-

sure at the expense of the broader value of providing affordable access to life-saving

medication [184].

Motivated by the value alignment problem and in an effort to avoid the tyranny of

metrics, this dissertation contributes systems for training and evaluating social robot

navigation in a way that is aligned with human values. Traditional navigation sys-

tems are often evaluated using metrics like path efficiency, time to goal, and collision
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avoidance. While these metrics capture important aspects of navigation, they fail to

account for critical social dimensions such as comfort, predictability, and perceived

safety. The challenge is not just to optimize for the right metrics but to understand

what the right metrics are in different social contexts.

This dissertation proposes that creating socially competent mobile robots requires

rethinking how success is measured in order to align evaluation metrics with human

values and, to this end, proposes the use of context-aware simulation systems and

subjective human feedback.

This dissertation begins with an overview of Social Robot Navigation in Chapter

2. It takes inspiration from work that I co-authored with Anthony Francis and others

following a symposium on Social Navigation in 2022 titled “Principles and Guide-

lines for Evaluating Social Robot Navigation Algorithms” [87], accepted to the ACM

Transactions on Human-Robot Interaction (THRI) journal. The chapter introduces

key definitions and highlights the relevance of social navigation in robotics. The chap-

ter then examines the unique challenges posed by the social aspects of navigation.

It also reviews existing simulation platforms, emphasizing the design decisions that

support realistic and meaningful evaluation. Finally, it presents criteria for measuring

success, incorporating both objective metrics and subjective assessments, along with

methodologies for collecting human feedback.

Building on the high-level overview, Chapter 3 introduces the motivation for a

human-centric simulation platform. It details the design considerations that guided

the initial development of the simulation platform that I proposed, the Social Environ-

ment for Autonomous Navigation (SEAN), which places an emphasis on the potential

for high-visual-fidelity, integration with the Robot Operating System (ROS) [212],

and dynamic environments populated with pedestrians. This chapter is based on the

work “SEAN: Social Environment for Autonomous Navigation,” which won a best

poster award - runner up prize at the 2020 Conference on Human-Agent Interaction
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(HAI) [268].

Chapter 4 presents a detailed analysis of the latest version of the SEAN simulation

system, a development effort that I led as part of this dissertation. This version, called

SEAN 2.0, includes new system features that support the simulation of pedestrian

motion through a novel crowd flow model. As part of this work, we provided a

characterization of social context inspired by ideas from Social Psychology [13]. We

then operationalized the characterization as a classifier based on this model which

allows the identification of social context, referred to as “Social Situations.” This work

was published in the paper “SEAN 2.0: Formalizing and generating social situations

for robot navigation,” published in the IEEE Robotics and Automation Letters (RA-

L) [273].

The ability to characterize and identify Social Situations is critical for the fair

evaluation of different robot navigation policies in different environments and under

different conditions. Once we can identify when robots are in similar Social Situ-

ations, a specific metric can then be applied to compare robot performance across

different evaluation runs. The next logical question is what metrics should be used

to evaluate policies under different social situations and thereby help one avoid the

tyranny of metrics. Therefore, Chapter 5 presents a study in which structured inter-

views were conducted with robot experts. The experts were asked to rank common

metrics for social robot navigation and answer open-ended questions about the most

important aspects of social robot navigation. An insight from these interviews is that

subjective human feedback is a critical component of evaluating social robot naviga-

tion. This chapter is based on the work “How Do Robot Experts Measure the Success

of Social Robot Navigation?” published in the Companion of the 2024 ACM/IEEE

International Conference on Human-Robot Interaction [275].

The knowledge that subjective human feedback is a critical component of evaluat-

ing social robot navigation motivates Chapter 6. We present the SEAN Experimental
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Platform (SEAN-EP), a tool for collecting human feedback for social robot navigation

via interactive simulations that are incorporated into online surveys. This is based on

the work “SEAN Experimental Platform: A Tool for Collecting Human Feedback for

Social Robot Navigation,” published in the 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) [270]. SEAN-EP advances the goals of this

dissertation by providing a scalable means of collecting subjective human feedback

on the social aspects of robot navigation.

In Chapter 7, we use the SEAN-EP system to study the collection of human

feedback via interactive methodologies. The two dimensions of Simulation vs. Real-

World and Interactive vs. Video are compared. The gold-standard condition is the

real-world, interactive condition, typical of human-subjects studies. The other typical

condition, non-interactive video-based surveys is compared against online, interactive

surveys via SEAN-EP. This study was presented in the work “Influence of Simulation

and Interactivity on Human Perceptions of a Robot During Navigation Tasks,” pub-

lished in the ACM Transactions on Human-Robot Interaction (THRI) [276]. We find

that while there are tradeoffs between these methodologies, interactive simulations

are a useful tool for collecting human feedback.

Finally, Chapter 8 explores using machine learning to predict human perceptions

of robot navigation performance from implicit feedback, reducing the need for man-

ual supervision. We introduce the SEAN TOGETHER Dataset of VR-based human-

robot interactions and show that spatial behavior features are key to inferring percep-

tions of robots. Our models, validated in both VR and real-world settings, perform

well on a binary prediction task and generalize across users. This work suggests a path

toward scalable, perception-driven robot learning. Our contributions were presented

in the article “Predicting Human Perceptions of Robot Performance During Naviga-

tion Tasks” in the ACM Transactions on Human-Robot Interaction (THRI) [309].
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Chapter 2

Mobile Robots that Navigate in

Human-Centric Environments∗

Social Robot Navigation (SRN), a subfield of Human-Robot Interaction (HRI), has

a well-established and growing body of research. Several recent surveys provide

overviews of the field, including Kruse et al. [144], Rios-Martinez et al. [218], Chik

et al. [64], Charalampous et al. [53], Cheng et al. [60], Gao and Huang [89], Mavro-

giannis et al. [174], Mirsky et al. [179], Möller et al. [183], Wang et al. [290]. Among

these, Gao and Huang [89] present an extensive review including 177 papers focus-

ing on social robot navigation algorithms This survey explores evaluation methods,

scenarios, datasets, and metrics, drawing on these findings to highlight current limita-

tions and suggest future research directions. Another recent survey by Mavrogiannis

et al. [174] focuses on the core challenges of social navigation, emphasizing navigation

algorithms, human behavior models, and evaluation. Wang et al. [290] contributes

new evaluation metrics aligned with the principles proposed by Kruse et al. [144]

including comfort, naturalness, and sociability. For readers seeking a broad overview
∗Parts of this chapter were originally published as Anthony Francis, ..., Nathan Tsoi, ..., and

others. (2023). Principles and guidelines for evaluating social robot navigation algorithms. In ACM
Transactions on Human-Robot Interaction (THRI) [87].
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of the field, I refer them to these surveys. However, given the diversity of existing

success metrics, this dissertation proposes that creating socially competent mobile

robots requires rethinking how success is measured. In particular, I propose that

evaluation metrics must be aligned more closely with human values. To this end,

this dissertation advocates for the use of context-aware simulation and the incorpo-

ration of subjective human feedback. In the future, my research aims to extend these

insights to other domains of social robotics that can benefit from lessons learned in

social robot navigation.

2.1 Defining Social Navigation

Research in Social Robot Navigation has the potential to transform how robots inte-

grate into human environments. While simple, point-to-point navigation in controlled

environments with well-defined parameters is generally considered a solved problem,

enabling robots to navigate complex, dynamic, and human-centric environments in

ways that are compelling to people is a significant challenge.

Humans are inherently social creatures. As we move through the physical world,

we engage in social behaviors such as making eye contact, moving aside to yield space

to others, and using subtle gestures to convey intent or acknowledge others. These

behaviors reflect our social expectations. We naturally expect other agents, including

robots, to exhibit some level of social behavior as well.

Understanding the nuances of human social behavior and implementing them in

mobile robots is a challenging task. It requires the technical ability to detect and

respond to subtle social cues, for example, by leveraging the ability to identify social

interactions and respond in a way that reflects human expectations.

In their review of Human-Robot Interaction for social robots, Kanda and Ishiguro

[127] argue that in addition to the basic functions of navigation (moving robots from
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place to place) and manipulation (interacting with objects) robots must be capable

of social interactions, which involve engaging with humans or other robots to com-

plete tasks. They distinguish robots that encounter humans from those that interact

meaningfully using features such as speech, via expressive faces, or gestures.

However, a robot that simply has socially interactive features does not mean that

its interactions will be perceived as suitable to the people it interacts with. High-

quality social interactions require subtle behaviors influenced by appropriate timing,

adaptation, and the perception which leverages understanding during the two-way

flow of communication between robot and human. Many systems studied by Kanda

and Ishiguro required a human to teleoperate the robot in order to succeed, which

highlights the challenges of developing fully autonomous social robots.

This raises the question of what distinguishes “social” robots from those that

are merely interactive. In order to address this question, we considered the use

of the term social and antisocial as it has applied to humans. One meaning of

social is participating in a group, modifying one’s behavior to meet the expectations

and needs of others in the group while still achieving one’s own goals. Another

definition emphasizes empathy and skill in interpersonal engagement. That is, the

understnading of others’s feelings and adapting one’s behavior to them. On the

contrary, antisocial behaviors are those that fail to follow the customs of society or

live without consideration for others’ needs.

I extend these ideas to social robot navigation. A broad definition of social robot

navigation encompasses three key components: mobility, social interaction, and the

potential for operation in concert with humans. Firstly, the robot must be mobile,

capable of moving in physical space, whether on the ground plane, in the air, or in

water. Secondly, it must be capable of social interaction, engaging with humans on

some level. Lastly, the robot should have the potential to operate in concert with

people, navigating around them and communicating either verbally or non-verbally.
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Importantly, the robot does not need to always operate in concert with people, but

should be capable of doing so when the situation demands it. This multifaceted view

emphasizes that social robot navigation is not just about locomotion as an application

area, but about aligning robot behavior with people’s social expectations.

2.2 Key Challenges in Social Robot Navigation

Designing mobile robots with sufficient social capabilities to complete navigation tasks

while acting in a socially acceptable manner presents a number of challenges.

Due to the fact that social expectations change along with the current social

situation, evaluation of progress in the field of social robot navigation must consider

the social context in which a robot is currently operating. Defining context in a way

that is both meaningful to humans and operationally useful for robots is a significant

challenge. Even so, researchers should aim to describe the cultural, environmental,

operational, task, and interpersonal context for social robots so that comparisons can

be made across the findings of the many studies that span the field of social robot

navigation.

At the most fundamental level, robots must ensure safety, avoiding physical harm

not only to humans but also to property and other machines [149, 37]. Yet physical

safety alone is not sufficient. Prior works have studied how robots should main-

tain comfort, avoiding behaviors that induce stress, violate personal space, or appear

unnatural [144]. These considerations are often subtle; for example, maintaining ap-

propriate proxemic distances [101, 218] and limiting erratic or jittery motion are key

factors in human perceptions of comfort and social acceptability. Ensuring that a

robot’s actions are legible, i.e., that their goals and future behaviors are easily inter-

pretable by observers, is another significant challenge [76]. This involves modifying

trajectories, or supplementing motion with communicative cues, so that nearby hu-
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mans can anticipate the robot’s intentions.

Beyond making behavior clear and non-threatening, social navigation also de-

mands a form of politeness which involves respecting social norms both in movement

and communication [120, 213]. For example, robots should avoid cutting off pedestri-

ans or forcing humans to yield in narrow passageways without appropriate signaling.

These behaviors should be balanced with social competency, which entails recogniz-

ing and conforming to local norms and conventions for shared spaces [63, 59, 179].

For example, social robots could consider lane conventions, turn-taking, and implicit

rules about how groups move and interact. Underlying all of this is the challenge of

understanding other agents : predicting human behavior and adjusting robot behav-

ior accordingly [204, 262, 30]. This may involve recognizing conversations, avoiding

interrupting social interactions, or proactively preventing trajectory conflicts [52].

Agents are not always simply reactive, they often also demonstrate proactivity,

taking initiative to resolve or prevent navigational deadlocks, or to facilitate human

progress in shared environments [169, 244, 51]. In highly dynamic spaces, socially

competent robots should not only act appropriately, but also adaptively. The no-

tion of contextual appropriateness captures this requirement: robot behavior must

be adjusted according to elements such as cultural norms, task urgency, physical

environment, and interpersonal interactions [29, 189, 214]. For example, maintain-

ing politeness may be deprioritized in time-critical applications such as emergency

medical delivery, whereas the same behavior might be essential in a museum guide

setting. These challenges are deeply interdependent and often in tension, requiring

a principled yet practical approach to evaluating social robot behavior in complex

contexts.
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2.3 Simulation for Social Robot Navigation

Simulators cannot simulate all aspects of the real world equally well. Therefore, when

designing a simulator for social robot navigation, developers must make deliberate

choices about which features to prioritize. At the most basic level, a social navigation

simulator must support the interaction between at least two agents. Beyond the min-

imum requirement, simulator design decisions should incorporate several key factors

including the level of abstraction, fidelity of agent and scene representations, realism

of physical interactions, and the sophistication of pedestrian modeling in terms of

motion planning and degrees of freedom. Some simulators focus on computational

efficiency by abstracting agents as simple geometric primitives (e.g., discs or cylin-

ders) and operating in lightweight two-dimensional environments [262, 58]. Others

strive for greater realism by incorporating articulated pedestrian motion, reactive be-

haviors, photorealistic three-dimensional scenes, and kinodynamic constraints, albeit

often at the expense of computational tractability and ease of implementation [224].

The intended use of the simulator should also play a role in the design process.

Considerations stem from uses such as algorithm development and benchmarking,

reproducibility and calculation of particular metrics. These objectives typically favor

structured, repeatable environments with well-controlled sources of variability. By

contrast, when the objective is to study human perception or interaction dynamics,

simulators must prioritize both visual and behavioral realism. In such cases, the mod-

eling of pedestrian reactivity, variability in human internal states (e.g., curiosity, fear,

or indifference), and rich environmental interactions become more critical [144]. Addi-

tionally, interoperability with popular development tools such as the Robot Operating

System (ROS) [212] or reinforcement learning frameworks like OpenAI Gym [42], as

well as support for common scene formats and multi-agent policy frameworks, can

significantly influence the simulator’s integration into existing research pipelines and

its capacity to support a range of experimental workflows.
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Another set of design decisions arise from the intended use of the simulator. For

example, algorithm development and benchmarking require reproducibility and the

ability to compute standardized metrics, often favoring structured environments and

controlled variability. In contrast, simulators used for studying human perception or

interaction dynamics must prioritize realism, both visually and behaviorally. Factors

like pedestrian reactivity, variability in human behaviors as well as internal states

(e.g., curiosity, fear, or indifference), and the richness of environmental interactions

vary in criticality depending on the design goals.

The simulation platform proposed in this dissertation, the Social Environment for

Autonomous Navigation (SEAN) [268, 273, 308], is focused on three key aspects of

the design process. First SEAN is a platform that is useful for running algorithms

implemented in the Robotic Operating System (ROS) [212], which is commonly used

to implement social navigation algorithms for real robots. SEAN emphasizes com-

patibility with ROS, enabling seamless execution of algorithms developed for physi-

cal robots. Built on the Unity game engine, SEAN supports high-fidelity rendering

and enables realistic outputs from simulated sensors. This includes simulated cam-

eras, particularly useful for perception-focused research, as well as simulated LiDAR,

which is commonly used for mapping and localization. Pedestrian motion is modeled

at two levels: low-level collision avoidance behavior is governed by the Social Forces

Model (SFM) [106], while high-level crowd flow is determined by a novel Behavior

Graph [273]. In combination, this allows for expressive and controllable pedestrian

behavior in complex and dynamic environments and also eliminates the need for the

labor-intensive process of manually specifying the trajectory for each pedestrian. The

evaluation of social navigation policies in SEAN is supported through deterministic

initial conditions and a suite of objective metrics. However, because interactions in

social navigation are inherently variable, SEAN additionally provides a formalization

of “Social Situations,” which is a framework for characterizing and identifying social

12



interactions across different trials. This unique set of features makes SEAN a pow-

erful tool for advancing the study of social competence in robot navigation, while

supporting the rigor, scalability, and reproducibility that modern research demands.

2.4 Measuring Success in Social Robot Navigation

Measuring success in social robot navigation remains a core challenge in the field. Un-

like traditional robot navigation tasks, social navigation involves coordinating motion

in spaces shared with humans, where success is not just a matter of reaching a goal

but of doing so in a way that adheres to social norms, communicates intent clearly,

and avoids discomfort or harm to people. This complexity makes it difficult to agree

on a unified metric that captures a holistic notion of success in social contexts.

A central reason for this difficulty is the multi-faceted nature of human-robot

encounters. Researchers must consider not only physical safety (e.g. avoiding colli-

sions), but also psychological safety, social acceptability, and the interpretability of

robot behaviors. Even seemingly straightforward terms like “safety” can take on differ-

ent meanings depending on the context, ranging from physical proximity to perceived

emotional comfort and moral appropriateness [149, 126, 37].

2.4.1 The Evolution of Metrics in Social Robot Navigation

Over time, the field has evolved from task-based success metrics (e.g., success rate,

distance without incident [171]) to quality-based metrics (e.g., SPL [10]) and finally

to social metrics that reflect the robot’s impact on humans. Social metrics can include

measures of personal space compliance [283], protocol-based surveys [206], or learned

models based on human ratings [299, 68].

Metrics for social navigation, however, come with their own challenges. Real-

world human-robot interactions are highly contextual, often dynamic, and affected
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by factors like prolonged exposure, user learning, or deployment-specific challenges.

Furthermore, different stakeholders may value different aspects of the interaction: a

customer might prioritize approachability, while a logistics operator might prioritize

efficiency. Experts in social robot navigation rank different metrics as more or less

important depending on the application [275].

2.4.2 Subjective vs. Objective Evaluation

While objective metrics are well-defined and straightforward to compute, their con-

nection to the quality of the social component of an interaction, can be tenuous.

Therefore, to evaluate social interactions, researchers often rely on subjective metrics

collected from human participants by querying them using scales such as the Robot

Social Attribute Scale (RoSAS) [49] or the Perceived Social Intelligence (PSI) [24]

scale, which capture a range of different aspects of a social interaction such as per-

ceived comfort and social intelligence. Collecting human feedback during in-person in-

teraction between a person and a robot is considered the gold standard, but in-person

studies are expensive, time consuming, and difficult to scale. Repeatedly querying

users mid-interaction can also disrupt the very social dynamics being measured. In

response, there is growing interest in utilizing alternative methods of collecting human

feedback or even predicting perceptions of robot performance from limited data.

2.4.3 Social Navigation Evaluation Protocols

Standardized evaluation protocols provide a critical component in the development

of social navigation algorithms. Utilizing standardized evaluation protocols, recent

benchmarks [35, 88, 104, 113, 133, 34] have incorporated both objective and subjective

measures to facilitate meaningful comparison across methods. These benchmarks aim

to drive progress in the field by assessing comparative performance against baseline

and proposed methods, identifying the contribution of specific components through

14



ablation studies, or evaluating generalization to new environments. Objective aspects

such as obstacle avoidance, trajectory smoothness, and task success can often be

measured without human input, but subjective social principles like safety, comfort,

and politeness require human input, making human-subjects studies essential. As

a result, robust evaluation protocols must consider not only what can be measured

computationally, but also how robot behaviors are perceived by people. Toolkits

that allow for annotation of simulated trajectories and the development of predictive

models from human-labeled data are therefore increasingly important as they may

enable a research lifecycle where empirical findings inform both method development

and evaluation protocols.

2.5 Data Collection for Social Robot Navigation

Data collection for social robot navigation can take different forms, ranging from in-

person interactive studies, typically conducted in controlled environments, to online

surveys that utilize videos or, recently even online interactive methods [275]. In-

person studies provide an interaction-rich experience for participants during which

they can observe and interact with a social robot in the real world. Following this

interaction, the participant is asked to fill out a survey to rate their experience with

the robot. A challenge of in-person data collection is that it can be expensive, time

consuming, and logistically complex. Online studies can be a more scalable and re-

producible approach, however they typically are not as interactive because the typical

approach for online studies is to have the participant watch a video of a human-robot

interaction, instead of actively participating in one. Still, online video-based studies

can support rapid hypothesis testing and validation, and they are especially valuable

for researchers who lack access to real-world deployment opportunities.

A recent alternative to video-based studies is the use of online, interactive meth-
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ods, which allow for interactive and engaging experiences for participants, while still

being a lower-cost, scalable alternative to in-person studies. Online interactive meth-

ods, such as browser-based simulations [270] add interactivity to the participant expe-

rience, enabling researchers to study human responses to robot behavior in real-time.

Though differences still exist between real-world and online interactive studies, inter-

active studies have benefits over passive video watching. For example, users may stay

more engaged and focused on the task at hand because of the two-way communication

required to interact with the robot.
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Chapter 3

Human-Centric Simulation as a Tool

for Social Robot Navigation∗

Simulation is useful along the whole development cycle of robotic systems including

data collection, features development, testing, and deployment [221, 192]. Simulation

is key for the verification of safety-critical systems and is particularly relevant for

companies that make robots for mainstream audiences [198].

Driven by the gaming industry and demand for autonomous vehicles, the robotics

community has recently experienced a rapid increase in the quality and features avail-

able in simulation tools. These advancements led to simulation environments for self-

driving vehicles [75, 9] and aerial vehicles [178, 232, 98]. Crowd simulations have im-

proved as well [246, 72, 15], although often independently of simulation environments

for mobile robots, including environments that build on game engines [116, 142], or

state-of-the-art rendering like Gibson [297] or ISAAC [193]. This disconnect has led

to a gap in high-fidelity simulation environments for evaluating social robot naviga-

tion in pedestrian settings, e.g., service robots that need to operate nearby people
∗Parts of this chapter were originally published as Nathan Tsoi, Mohamed Hussein, Jeacy

Espinoza, Xavier Ruiz, and Marynel Vázquez. (2020). SEAN: Social Environment for Au-
tonomous Navigation. In Proceedings of the 8th international conference on human-agent interaction
(HAI). [268].
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Figure 3.1: SEAN’s rendering of two virtual worlds: an outdoor city scene and a lab scene,
both of which include dynamic pedestrians for studying social robot navigation.

and are subject to social conventions. Our work, depicted in Figure 3.1, is a step

towards filling this gap.

We proposed SEAN, a Social Environment for Autonomous Navigation, as an

extensible and open-source simulation platform. SEAN includes animated human

characters useful for studying human-robot social interactions in the context of navi-

gation. Similar to other recent simulators [178, 232, 116, 142], SEAN leverages modern

graphics and physics modeling tools from the gaming industry, providing a flexible

development environment in comparison to more traditional robotics simulators like

Gazebo [141]. We provide two ready-to-use scenes with components that allow social

agents to navigate according to standard pedestrian models. We provide integration

with the Robot Operating System (ROS), which allows for compatibility with exist-

ing navigation software stacks. An important contribution of this work is a toolkit

for repeated execution of navigation tasks and logging of navigation metrics.

3.1 Core Elements of Human-Centric Simulation

SEAN is composed of a collection of tools built around the Unity 3D game engine∗

and the Robot Operating System (ROS) [212] that allows for control of a mobile

robot in a dynamic, simulated human environment. Unity implements the NVIDIA

PhysX physics engine, which has been found to provide promising results for robot

simulation [142]. Communication between ROS and Unity is implemented as a set
∗https://unity.com/
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of scripts executed as part of the Unity scripting run-time model and implemented

via the ROS# library.† SEAN’s architecture balances between a) ease of integration

with navigation systems (or robot teleoperation) via ROS, b) high visual fidelity for

creating immersive environments and enable vision-based navigation methods, and

c) a cross-platform ecosystem that supports iterative development. SEAN works in

Windows 10 and Ubuntu 18.04 with ROS Melodic.

The key tenets of our approach are usability and flexibility. While these often seem

at odds, we seek these goals by providing a set of scenes, robots, and evaluation met-

rics within the platform to enable users to use the system with minimal preliminary

work. Additionally, we maintain an open source repository and supporting documen-

tation to allow the community to improve our social navigation environment.‡. Our

contributions are an effort to begin to explore the challenging problem of fairly and

reproducibly benchmarking algorithms for human-robot social interactions.

Scenes: A scene is a 3D environment in which a robot operates. With our

initial release, we provide a high-fidelity model of a lab environment and a larger

outdoor city scene (Figure 3.1). Because humans play a key part in the study of robot

navigation in these environments, for each scene we have created reasonable start and

goal positions for human agents to navigate. To this end, SEAN uses a combination of

crowd flow prediction [234] and Unity’s built-in path planning algorithm. The system

is parameterized such that we can easily deploy an appropriate number of agents given

the size and context of the scene. We can also vary the density of pedestrians across

experiments in a repeatable manner. SEAN’s online documentation explains how to

create and modify scenes.

Robots and Sensors: SEAN provides 2 robot models ready to run: a medium

size Clearpath Jackal, which is suitable for indoor and flat outdoor environments;

and a Warthog with 254mm of ground clearance. The Warthog is more suitable
†https://github.com/siemens/ros-sharp
‡https://sean.interactive-machines.com/
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for outdoor environments due to its bigger size (Figure 3.1). Because neither robot

comes equipped with standard sensors, we outfitted them with a simulated Velodyne

VLP-16,§ a LIDAR scanner, and a simulated RGB camera.

Evaluation Toolkit: SEAN’s toolkit for evaluating social navigation algorithms

centers on the Trial Runner, which enables repeatable and automatic execution of

navigation tasks. The Trial Runner performs a trial by executing a collection of point-

to-point navigation episodes. Each episode begins with the Trial runner configuring

the scene, actors, and robot positions. Pedestrians are assigned goal positions and a

ROS navigation goal is used to indicate the desired final pose for the robot. As the

robot navigates, the Trial Runner records relevant metrics. It starts a new episode

once the robot has moved to a sufficiently close location to the destination or the

episode times out. While the initial conditions for each episode are random by default,

they are recorded at the beginning of an episode. This allows to replay the episode

for fair comparisons of navigation methods.

SEAN currently tracks the following navigation metrics: whether or not the robot

reached the goal position, how long it took to reach the final position, collisions

with static objects, and the robot’s final distance to the goal position. The latter

metric is particularly useful for comparison in challenging tasks. In addition, SEAN

can continuously track metrics related to social interactions. Currently, we track the

closest distance between the robot and pedestrians, as well as the number of collisions

with pedestrians, which are recorded separately from collisions with all other objects.

These metrics are common in the social navigation literature [261, 194, 246, 173, 207]

and serve as a starting point for comparisons among navigation approaches. We plan

to expand this set of metrics in the future.

Table 3.1 provides example results by the Trial Runner for the ROS Navigation

Stack [99], which was minimally tuned, and a teleoperated robot. Localization for the
§https://github.com/Field-Robotics-Japan/unit04_unity/
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Table 3.1: Sample Jackal, Warthog results, via the ROS Nav. Stack, or teleoperated*.
µ± σ over 10 episodes.

Scene Robot Elapsed (sec.) Complete Final Dist (m) Ped. Dist (m) Collisions
Lab J 24.51± 19.36 60% 2.26± 2.92m 1.54± 1.76m 7.1± 9.4
Lab J * 21.6± 28.08 88% 1.14± 1.99 0.92± 1.16 4.63± 5.83
City J 37.09± 13.74 29% 9.54± 8.94 0.64± 0.42 20± 30.83
City J * 38.54± 29.5 80% 4.59± 11.87 1.06± 0.67 3.1± 7.58
City W * 31.7± 20.94 100% 0.48± 0.01 2.27± 1.08 0± 0

ROS Nav. Stack was performed via SLAM [96]. Low performance is attributed to not

taking into account human actors during mapping and overly conservative navigation

behavior in the dynamic environments [261].

Teleoperation was implemented through a ROS node that connected to a gamepad

controller. The teleoperated Jackal did not reach 100% of the target goals because

people blocked its way and the episodes timed out. Nonetheless, teleoperation was

an interesting baseline for automated methods. It can also serve to gather demon-

strations or human preferences for navigation trajectories in the future [145, 278].

3.2 Summary

Simulation plays a critical role in the development and evaluation of social robot nav-

igation systems. The Social Environment for Autonomous Navigation (SEAN) plat-

form supports systematic and repeatable performance evaluation while accelerating

development by enabling early identification of navigation failures. While simulation

is not a substitute for real-world testing, SEAN is designed to complement physical

experiments by offering a controllable, reproducible, and human-centric environment

for studying human-robot interactions. This chapter introduced the motivation for

building a simulation platform focused on social navigation. It outlined the key design

decisions behind SEAN, resulting in support for high visual fidelity, seamless integra-

tion with the Robot Operating System (ROS) [212], and the inclusion of dynamic

environments that incorporate virtual pedestrians.
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Chapter 4

Systems for Simulating and

Evaluating Social Robot Navigation∗

Simulating socially competent robot navigation requires more than modeling physical

obstacles; it necessitates capturing the dynamics of interaction between agents, par-

ticularly between a robot and a human pedestrian, within a shared space. This foun-

dational requirement distinguishes simulators for social navigation from traditional

navigation, where other entities are treated as passive or purely reactive. Human-

centric simulations aim to recreate scenarios in which the robot must perceive, in-

terpret, and respond to human behaviors such as yielding the right-of-way, walking

alongside a person, or avoiding interruption of human activities. To support such

tasks, the designers of social navigation simulators must model not only the physi-

cal trajectories of agents, but also consider the social elements including verbal and

non-verbal signals inherent in social human behavior.
∗Parts of this chapter were originally published as Nathan Tsoi, Alec Xiang, Peter Yu, Samuel S.

Sohn, Greg Schwartz, Subashri Ramesh, Mohamed Hussein, Anjali W. Gupta, Mubbasir Kapadia,
and Marynel Vázquez. (2022). SEAN 2.0: Formalizing and Generating Social Situations for Robot
Navigation. In IEEE Robotics and Automation Letters (RA-L) [273] and Qiping Zhang∗, Nathan
Tsoi∗, and Marynel Vázquez. (2023). SEAN-VR: An Immersive Virtual Reality Experience for Eval-
uating Social Robot Navigation. In Companion of the 2023 ACM/IEEE International Conference
on Human-Robot Interaction (HRI) [308]. ∗ indicates equal contribution.
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SEAN 2.0 builds upon the preliminary research around the SEAN simulator [268]

to create a comprehensive simulation system that supports the design and evaluation

of social navigation algorithms.

4.1 Introduction

While a significant amount of work has been done to enable robots to effectively move

in human environments [174], prior work has largely been fragmented by interaction

scenarios [90]. For example, past work has focused on studying navigation in sce-

narios where robots cross human paths [122, 58], approach users [228, 82] or groups

[266, 303], and move in crowded environments [256, 263]. This fragmentation raises

the question: how can we build robot navigation systems that handle different social

contexts?

Inspired by work in social psychology, we propose to reason about context for social

navigation in terms of social situations, which consider the interplay between robot

task and environmental factors. Social situations may occur in a given interaction

scenario, consisting of three key elements: 1) the physical environment (such as a

lab or warehouse), 2) pedestrian behavior in the environment, and 3) the robot’s

navigation task (involving motion from a start to a goal pose).

We contribute an open-source system, the Social Environment for Autonomous

Navigation (SEAN) 2.0, for training and benchmarking social navigation algorithms.

Unlike other robotics simulation environments capable of high visual fidelity, such as

[75], SEAN 2.0 is designed so that robots can experience a range of different pedestrian

behaviors, which result in varying social situations. To ground the concept of social

situations in our system, we propose logic-based definitions for five social situations

relevant to navigation. These definitions serve as situation classifiers in SEAN 2.0.

One approach to specifying pedestrian behaviors for simulated interactions in
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Example of Random Pedestrian Control Example of Handcrafted Pedestrian Control

Behavior-Graph Environmental Annotation Example of Behavior-Graph Pedestrian Control

Figure 4.1: Different methods for specifying pedestrian behaviors in SEAN 2.0. The Behav-
ior Graph method is a novel approach that uses an environmental graph-based annotation
(bottom-left) to generate behavior (bottom-right).

social navigation is to handcraft a starting pose and a goal pose for each pedestrian

in the scene. Handcrafting pedestrian behavior is time-consuming and specific to

a single implementation, as evidenced by the limited number of social situations

commonly employed when evaluating navigation policies [90]. Randomly choosing

start and goal poses is an easy alternative to handcrafting; yet, as our experiments

show, it is less likely to result in varied social situations in practice.

As part of SEAN 2.0, we propose a novel method for specifying pedestrian be-

havior based on a Behavior Graph annotation in the physical environment (Figure

4.1, bottom). We define the Behavior Graph such that nodes represent either static

group formations or navigation waypoints, and compute flow between nodes based

on graph parameters. Pedestrians traverse the scene by walking between different

nodes in the graph. This creates opportunities for the robot to experience different

social situations while avoiding time-intensive handcrafting of pedestrian motion (as

in SEAN 1.0 [267]).

SEAN 2.0 also provides a range of components to enable the training and bench-

marking of navigation policies, including vision and depth sensors, several physical
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environments, different means of specifying robot tasks, and a range of evaluation

metrics. To validate that SEAN 2.0 would be useful to the robotics community, we

collected feedback from 7 roboticists who were early users of the system and incor-

porated their feedback in the final version of SEAN 2.0.

As part of our experimental evaluation, we studied the distribution of social sit-

uations that emerged in datasets gathered with different methods of pedestrian con-

trol according to logic-based social situation classifiers. We found that the Behavior

Graph data resulted in more varied social situations than the data generated with

handcrafted or random pedestrian motion. Also, policies trained on Behavior Graph

data outperformed other learned policies that were trained using alternative methods

for pedestrian behavior generation in SEAN 2.0. Finally, our experiments showed

that analyzing navigation policies by social situation can reveal new insights about

robot policy performance.

The five main contributions of this chapter are: 1) SEAN 2.0, a novel system for

training and benchmarking social navigation systems; 2) a logical formalization of

social situations; 3) multiple methods for pedestrian behavior generation including

a novel Behavior Graph approach; 4) validation that our system is useful to users

outside our team via feedback from other roboticists; and 5) experiments that show

the usefulness of social situations in SEAN 2.0 towards the training and evaluation

of robot navigation systems.

4.2 Related Work

4.2.1 Simulation Frameworks for Social Navigation

Our work builds on developments in robotics simulators. Recently, robotics simula-

tors such as CARLA [75], iGibson [156], and Habitat [170] have focused on creat-

ing high-fidelity environments and have started to provide basic control of individual
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pedestrians. Several works have extended the MORSE robotics simulator [78], adding

humans that react to a robot [129] and humans in wide areas or narrow passages [81].

The MORSE simulator integrates with the Robot Operating System (ROS); how-

ever, visual fidelity is low in comparison to simulators based on game engines such as

CARLA.

Crowd simulation frameworks such as Nomad [45], PED-SIM [92], and Menge [72]

incorporate methods of individual and group behavior control into a system, but

do not integrate robotics platforms to train and evaluate social robot navigation

systems. Their strength lies in simulating pedestrian motion, not in integrating them

in realistic physical environments or in the visualisation of pedestrians necessary for

training state-of-the-art vision-based robotics algorithms.

Our prior work, SEAN 1.0 [267], was designed for training and evaluating social

navigation algorithms. It supported integration with ROS and high-quality rendering

of virtual pedestrians. However, it only provided simple waypoint navigation for the

pedestrians, requiring time-consuming handcrafting of their behavior. More specif-

ically, SEAN 1.0 allowed users to specify pedestrians’ start and goal locations and

implemented only one example set of such handcrafted pedestrian start and goal loca-

tion annotations in three physical environments. SEAN 2.0 continues to provide the

same ability to customize start and goal locations for pedestrians, but provides 13 sets

of handcrafted start and goal positions per environment (39 total sets) across 5 social

situations. This allows users of SEAN 2.0 to generate more varied pedestrian behav-

ior with the handcrafted approach for pedestrian control out of the box. Further, we

found that our proposed Behavior Graph, a novel method for specifying pedestrian

behavior, was a superior method for training a navigation policy. See Section 4.5 for

more details.

An alternative approach to evaluating social navigation policies is using prere-

corded pedestrian trajectories as in SocNavBench [33]. Prerecorded pedestrian tra-

26



jectories offer realistic motion, but are not reactive to the robot during policy rollout.

Our work complements [33] by allowing for dynamic human-robot interactions. To

our knowledge, SEAN 2.0 is the only robotics simulation environment capable of

high visual fidelity that provides easy-to-customize, dynamic pedestrian behaviors,

including group formations.

4.2.2 Modeling Pedestrian Behaviors

Algorithms for the animation and control of virtual characters have been studied

by different disciplines such as computer graphics [130], cognitive science [293], and

computer vision [224]. The generation of collective behaviors has traditionally fo-

cused on modeling individual members of a crowd to elicit human-like behavior from

the group. For example, flocks of animals inspired Reynolds et al.’s early work on

modeling groups of pedestrians [216]. Pelechano et al. [200] focused their effort on im-

buing human-like perception and decision making capabilities into individual agents

to elicit more realistic group behavior. Collective behavior conditioned on a given

environment can rely on annotations of the physical space, such as semantically rele-

vant descriptors [203]. We take inspiration from these ideas and utilize environmental

annotations in our proposed Behavior Graph.

To produce phenomena observed in human navigation, collision avoidance meth-

ods for individual agents are often used to complement collective behavior. Such

methods, often referred to as microscopic models, include the Social Forces model [106]

and the velocity obstacle method of the ORCA model [277]. While ORCA’s primary

benefit is collision-free movement between a large number of agents, the Social Forces

model is easily extended by the addition of new forces. For this reason, our proposed

Behavior Graph relies on the Social Forces model. In the future, SEAN 2.0 could be

extended with other microscopic models.
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4.3 Formalizing Social Navigation Context

There are many definitions of context in disciplines related to social navigation. For

example, in social signal processing, context has been defined as the who, what,

when, where, and why of interactions [282]. In Human-Robot Interaction (HRI),

the term context has been used to refer to high-level environmental concepts such

as an art gallery or a dining hall [189]. Likewise, context has been used to describe

the relationship between agents (human and robot) in the scene, such as agents in

a static group formation or standing in a line [8]. Task-based context has also been

explored in HRI, often in the domain of engagement [50].

In this work, we propose to reason about context in social robot navigation based

on the notion of social situations proposed by Argyle et al [13] in psychology. Those

authors studied the interplay between internal and external determinants for human

behavior. In their work, social situations encompass the intrinsic goal of a person and

the extrinsic environment in which this person acts. Individuals’ goals arise from an

underlying drive that satisfies a specific need.

Consequently, we propose to reason about social situations in robot navigation

as a construct that considers the interplay between a robot’s task and environmental

factors. Consider, for example, a situation when a robot must cross a pedestrian

path to reach the other side [201]. This situation arises from the combination of the

environmental factor of pedestrian traffic and the robot’s start location relative to

a navigation goal. Similarly, a robot approaching a group [303] could be considered

another example of a social situation. In this case, the task is navigating to a specific

goal position in a conversational group and depends on people’s spatial arrangement.
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Cross Path Leave GroupDown Path Join Group Empty
Figure 4.2: A brief visual description of social situations. Pedestrians are denoted as white
circles and the robot as an orange square.

4.3.1 Logical Expressions for Social Situations

This section operationalizes the proposed notion of social situations in relation to

five instances relevant to navigation, as shown in Figure 4.2. In particular, we con-

sider situations that involve both pedestrians in motion and static group formations.

Although our proposed set of social situations may not be complete for all robot nav-

igation applications, it helps demonstrate the value of formalizing social situations

for mobile robotics.

We use logic to formally define the proposed situations. The domain of predi-

cates, defined below, consists of vectors in R2 that represent position, orientation (as

unitary direction vectors), or velocity. These vectors can be provided in simulation

or estimated in the real world.

• Nearby Agent: Near(x1,x2) is true when two agents at positions x1 and x2

are separated by ||x1 − x2|| < D.

• Group Member: Member(x, g) is true when agent x is a member of the

group with center at position g.

• Walking: Walking(v) is true when an agent is moving at a velocity v where

||v|| > V.

• Perpendicular Trajectory: PerpTraj(d1,d2) is true when the orientations
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of two agents d1 and d2 are perpendicular within an error of ±A rad:

cos(
π

2
+ A) ≤ d1 · d2

||d1||||d2||
≤ cos(

π

2
− A)

• Parallel Trajectory: ParTraj(d1,d2) is true when the orientations of two

agents d1 and d2 are parallel within an error of ±A rad:

cos(A) ≤ d1 · d2

||d1||||d2||

All predicates are defined by simple geometric relationships except for group mem-

bership. We assume group membership is provided by the simulator or a method such

as [245, 255] which reasons about conversational formations [136]. Section 4.4.7 pro-

vides more details of our specific choice of other parameters for these predicates.

The five Social Situations (Figure 4.2) are expressed as:

Cross Path: a robot is at a position xr with orientation dr. Also, it is nearby an

agent at xa, moving at velocity va, with orientation da perpendicular to dr.

CrossPath(xr,dr,xa,va,da) ≡

Near(xr,xa) ∧Walking(va) ∧ PerpTraj(dr,da)
(4.1)

Down Path: a robot is at position xr with orientation dr. Also, it is nearby an

agent at xa, moving at velocity va, with orientation da parallel to dr.

DownPath(xr,dr,xa,va,da) ≡

Near(xr,xa) ∧Walking(va) ∧ ParTraj(dr,da)
(4.2)

Joining Group: a robot at position xr has a navigation goal x′
r, which corresponds

to a location that would make the robot a member of a group with a center at g. The

robot is also near an agent at xa, which is a member of the same group. Note that

30



once the robot arrives at the goal, JoinGroup is no longer true.

JoinGroup(xr,xa,x
′
r, g) ≡ Near(xr,xa)∧

Member(xa, g) ∧Member(x′
r, g) ∧ ¬(xr = x′

r)
(4.3)

Leave Group: a robot that is currently at a position xr, had a starting position x′′
r

which made it a member of a group with a center at g. The robot is near an agent

located at xa, which is a member of the same group.

LeaveGroup(xr,xa,x
′′
r , g) ≡

Near(xr,xa) ∧Member(xa, g) ∧Member(x′′
r , g)

(4.4)

Empty: a robot at position xr has no other agents nearby. Let X be the set of

positions for all other agents in the environment, then:

Empty(X,xr) ≡ ∀x ∈ X,¬Near(x,xr) (4.5)

The satisfiability of these logical expressions depends on the agents in the envi-

ronment. Only when a sufficient number of agents are present, both moving and in

static group formations, are all non-empty expressions satisfiable. For example, in

environments without group formations, JoinGroup and LeaveGroup are not satisfi-

able. The size of the environment also impacts satisfiability. For example, consider an

environment with a robot and a pedestrian. The Empty proposition is not satisfiable

if the navigable space in the environment is smaller than the nearby distance D.

4.4 SEAN 2.0 System

SEAN 2.0 builds on our prior work, the Social Environment for Autonomous Navi-

gation version 1.0 [267]. SEAN 1.0 and SEAN 2.0 both use the Unity game engine
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Scenario

Physical Environments:

Warehouse LabOutdoor

Behavior Graph Annotation

Pedestrian Behaviors:

Handcrafted Random Graph

Robot Tasks:

Handcrafted

Random Graph

SEAN 2SEAN 1

Leave Group Join Group

Busy Robots: 

Jackal Kuri P3DX

Sensors: 

LIDAR 1st Person RGB 3rd Person RGB

RGB-D Top-Down RGB

Metrics: 
Completed Total Time Final Dist. to Goal

Robot-Ped. Collisions Robot-Obj. Collisions

Time Not Moving Total Path Len.

Min. Dist to Goal

Path IrregularityPath Efficiency

Personal Dist. Violations

Intimate Dist. Violations

Classifiers: Cross Path Down Path

Leave Group Join Group Empty

Figure 4.3: SEAN 2.0 system architecture including components that were re-used or
adapted from SEAN 1.0 (rounded box, grey) and new to SEAN 2.0 (purple). Connections
denote relationships between components in a Scenario. The Scenario, Metrics, and Clas-
sifiers are part of the SEAN 2.0 Unity API and exist for all scenes. The SEAN 1.0 Trial
Runner [267] is superseded by Robot Tasks and the Metrics system in SEAN 2.0. Warthog
is the only robot in SEAN 1.0 which is not in SEAN 2.0 due to it’s unwieldy size relative to
people. See the text for details.

and the Robot Operating System (ROS) [212] as underlying technologies, and can be

integrated with online interactive surveys [269]. The core innovation in SEAN 2.0 is

a variety of methods for specifying pedestrian behavior, including a novel Behavior

Graph approach that induces the proposed social situations described in Section 4.3.

In addition, SEAN 2.0 provides improved simulated sensors to facilitate vision-based,

trained policies and two new features. One new feature is a set of logic-based social

situation classifiers and the other is a revamped software architecture. Our goal was

to make SEAN 2.0 easily configurable for users of its graphical user interface and

easily extensible for users of its programming interface. Figure 4.3 shows the system

components of SEAN 2.0, including those that are reused or adapted from SEAN 1.0.

4.4.1 Software Design

The usability of a software system depends directly on the underlying design decisions

[26]. Therefore, we designed SEAN 2.0 following the singleton design pattern [237]

and taking a convention over configuration approach [57].

The SEAN Unity API is implemented as a singleton GameObject, through which

all key components can be accessed. Unlike other scripts that may be added or

removed from the Unity scene at various times, this object exists throughout the

duration of the simulation and provides the logic necessary to wrap other elements
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that may be removed or added at various times. The singleton GameObject includes

all elements discussed below such as pedestrian behaviors, robot tasks, social situation

classifiers, metrics, and other utilities such as a simulated clock and a tool for creating

ROS maps. The singleton GameObject can be added to any scene, thereby making

it compatible with SEAN 2.0.

Classes in SEAN 2.0 use a convention over configuration approach by providing

sensible defaults [57]. This makes our system easier to use than SEAN 1.0, which had

an ad-hoc design. Feedback from early users of SEAN 2.0 indicates that our design

choices provide a better user experience than SEAN 1.0 (see Section 4.5.1 for more

details).

4.4.2 System Architecture

Our system architecture was designed to encapsulate the elements of a Scenario, which

consists of the Physical Environment, Pedestrian Behavior, and Robot Task. These

elements are shown in Figure 4.3 and correspond to objects in the SEAN 2.0 singleton

GameObject. Physical Environments are locations in which a scenario occurs, such

as a warehouse. Pedestrian Behaviors specify pedestrian motion. Robot Tasks specify

a robot’s start pose and goal pose.

4.4.3 Physical Environments

Environments correspond to the physical, static elements in a scenario and are com-

posed of 3D meshes, textures, lights, and colliders that construct a Unity Scene. Static

elements of the environment constrain agent motion and define a navigable area on

the ground plane. SEAN 2.0 includes the warehouse, lab, and outdoor environments

from SEAN 1.0 with annotations for our new pedestrian behaviors.
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4.4.4 Pedestrian Behaviors

SEAN 2.0 supports three different approaches to high-level pedestrian control: ran-

dom, handcrafted, and graph. High-level pedestrian motions are defined by their start

and goal poses. They also depend on a low-level collision avoidance mechanism,

which relies on the Social Forces model [106]. We extend the Social Forces model

with consideration for pedestrians moving along one side of a hallway [152] and to

stochastically vary the distances that they prefer to maintain from the robot [289].

The next sections describe the three methods for pedestrian behavior generation in

SEAN 2.0.

Random Pedestrian Behavior: Start and goal locations are randomly chosen on

the environment’s navigable plane.

Implementation. There are no parameters other than the number of pedestrians

in the scenario. This approach for pedestrian behavior generation is the easiest to

implement, but no group formations are created by this method. We use this behavior

as a baseline in our experiments to evaluate the effect of pedestrian density on policy

performance relative to the other methods of pedestrian control in SEAN 2.0.

Handcrafted Pedestrian Behavior: Start, goal, and intermediary waypoint poses

for the pedestrians are chosen manually in each environment and may be designed to

resemble specific social situations. This is the most granular method of pedestrian

control. The main challenge with this method is twofold: 1) it can be time-consuming,

and 2) the many low-level decisions one has to make in regard to goal placement may

not align with the intended high-level behavior. This challenge is further discussed

in Section 4.5.

Implementation. In each of the environments, we implemented 13 unique sets of

start and goal poses for pedestrians across five handcrafted scenarios to resemble each

social situation described in Section 4.3.1. Pedestrians in the Join Group and Leave

Group scenarios are configured in a static group formation typical of conversational
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encounters [136]. In the Cross Path and Down Path scenarios, we specified navigation

waypoints along a path so that the robot can cross parallel or travel perpendicular

to the path of pedestrian waypoints. While choosing group locations and pedestrian

waypoints, we also chose corresponding poses for the robot in specific tasks, described

in Section 4.4.5.

Some handcrafted pedestrian behaviors are parameterized by the location of static

group formations. Given a group center, we set the poses of individual group mem-

bers by mimicking conversational formations in the Cocktail Party dataset [306] in a

manner similar to [303].

Graph-based Pedestrian Behavior: We propose using a directed graph abstrac-

tion, which we call the Behavior Graph, to specify collective pedestrian behaviors.

A graph annotation is overlaid in the environment (Figure 4.1, bottom-left). The

graph parameterizes pedestrian motion via two types of nodes that determine pedes-

trian behavior. Nodes serve as either 1) navigational waypoints (through which an

unrestricted number of pedestrians can continuously flow) or 2) as a location for a con-

versational group formation (where a number of pedestrians can enter a static group

formation for a specific duration). The graph edges connect nodes that pedestrians

can navigate through.

On initialization, individual pedestrians are stochastically assigned to starting

locations, which correspond to specific nodes from the Behavior Graph annotation.

During the simulation, pedestrians without an assigned goal position are first assigned

to group nodes, until all group nodes are at capacity. When pedestrians assigned to

group nodes reach their destinations, they remain at the group for a given dura-

tion. Once all the group nodes have reached capacity, the remaining pedestrians are

stochastically assigned to waypoint nodes. This allows the simulation to maintain

group formations and it allows pedestrians to automatically transition between nav-

igation and being part of conversational groups, which is not easily achievable with
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the random or the handcrafted pedestrian behaviors in SEAN 2.0.

The location of graph annotation nodes and the parameterization of accompanying

edges can be used to modify pedestrian congestion in the environment. Depending

on the graph’s structure, certain areas may have more or less pedestrian congestion

than what a user desires. Pedestrians can be directed away from the congested area

by using edge weights associated with low or uni-directional flow.

Implementation. SEAN 2.0 provides one Behavior Graph annotation for each en-

vironment (warehouse, lab, and outdoor). Each Behavior Graph annotation consists

of a graph where every pair of adjacent nodes is connected by two directed edges.

Edges are weighted to control pedestrian congestion using one of three costs: cmin,

1, or cmax, where 1 < cmax and 0 < cmin < 1. For example, consider the edges

between nodes u and v. Users of SEAN 2.0 can constrain pedestrian flow using 4

sets of edge weights 〈cuv, cvu〉: 〈1, 1〉 for there to be medium flow between the nodes,

〈cmin, cmin〉 for high flow, 〈cmax, cmax〉 for low flow, and either 〈1, cmax〉 or 〈cmax, 1〉 for

uni-directional flow.

The path to a pedestrian’s goal node is computed over the edges between waypoint

nodes using Dijkstra’s algorithm [74], which considers the different edge costs and

ensures that pedestrians do not disrupt groups. Pedestrians traverse the computed

path using the Social Forces model [106], which allows them to perform local collision

avoidance.

4.4.5 Robot Tasks

Tasks specify the robot’s start (A) and goal (B) poses. Robot tasks can leverage

ground truth information from the simulation, like group locations, to choose robot

poses that may result in specific social situations.

SEAN 2.0 implements the following robot tasks:

• RandomABNav : uniformly samples a start and a goal pose for the robot from
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the navigable plane in the environment.

• BusyABNav : samples a start and a goal pose for the robot near the largest

cluster of pedestrians. Pedestrian poses from SEAN 2.0 are clustered via k-

means.

• Join Group: a group center is sampled from graph nodes associated with group

formations. Then, a point in the group is sampled as the goal location for the

robot and a further away point is sampled as its start pose.

• Leave Group: a group center is sampled from graph nodes associated with group

formations. Then, a point in the group is sampled for the start location for the

robot and a further away point is sampled for the goal pose.

• Handcrafted : assigns a start and goal pose specifically chosen by a scenario

designer. We implemented 5 handcrafted tasks corresponding to the Cross

Path, Down Path, Join Group, Leave Group and Empty social situations.

Handcrafted tasks can only be used with handcrafted scenarios, as both robot and

pedestrian poses are chosen by the scenario designer. Join and Leave Group tasks can

only be used with the Behavior Graph method of pedestrian control as they depend

on nodes in the graph. All other tasks are decoupled from the method of pedestrian

control.

Tasks can be designed such that the robot is likely to experience a certain social

situation. However, the social situations that we consider in this chapter only occur

upon satisfaction of the propositions described in Section 4.3. For example, a robot

aiming to complete a Join Group task is not guaranteed to enter a Join Group social

situation, but given the task design it is likely to experience this situation.
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4.4.6 Sensor Integration

SEAN 2.0 provides a simulated RGB camera and a simulated depth sensor. By

convention, each robot implementation includes one simulated depth sensor and three

RGB cameras. The depth sensor is positioned in a first-person perspective and the

RGB cameras provide three angles: first-person, third-person, and top-down. This

default configuration ensures that a standard API is available when accessing sensor

data for any robot, allowing for comparison across robots.

4.4.7 Social Situation Classifiers

As part of SEAN 2.0, we provide five rule-based classifiers that implement the propo-

sitional predicates defining our five social situations from Section 4.3. The predicates

that we define use parameters derived from Hall’s work in proxemics [101] where

applicable. For example, we consider two agents to be “nearby” when the distance

between them is less than two times their personal space (1.2m). Our experiments in

Section 4.5 indicate that social situation classifiers can help users better understand

the distribution of data resulting from different pedestrian control methods. They

can also help users identify how well a robot navigation policy can learn from and

perform in different social situations.

4.4.8 Metrics

We implement a range of social navigation metrics which are aggregated over the

duration of a Robot Task, including:

• Path Efficiency : ratio between the traveled and geodesic distance of the search-

based path from the starting position.

• Time Not Moving : seconds that the robot was not moving.
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• Intimate Distance Violation: number of times the robot approached a pedes-

trian within a distance of 0.45m.

Our documentation details all of the other metrics implemented in our system.∗ The

underlying data needed to compute these metrics is available from the SEAN 2.0 API.

4.5 SEAN 2.0 System Evaluation

We first studied the usefulness of SEAN 2.0 for the robotics community by collecting

and incorporating feedback from seven researchers who used our system. Then, we

studied how robot navigation datasets generated via SEAN 2.0 affected the training

and evaluation of social navigation algorithms in environments with varying pedes-

trian behavior.

4.5.1 User Feedback About SEAN 2.0

We initially gathered feedback about SEAN 2.0 from four robotics researchers at

Yale University, University of Washington, University of Massachusetts Amherst, and

Carnegie Mellon University who were previously unfamiliar with the present work.†

They installed and used SEAN 2.0 and then provided written feedback. Although one

researcher noted that occasionally pedestrians exhibited “unnatural behavior like run-

ning into each other, the robot, and obstacles,” in general, the feedback was broadly

positive. For example, one person said that the “lab scene and the warehouse scene

both looked good.” Another researcher familiar with the dynamics of the Kuri robot

– one of the robots included in SEAN 2.0 – noted that the base dynamics were real-

istic and Kuri followed the navigation path “in a way that looks much like the real

platform” when controlled by the ROS Navigation Stack. The one researcher who
∗https://sean.interactive-machines.com/docs/metrics
†Our protocol was reviewed by our IRB and exempted from annual review.
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had prior experience with SEAN 1.0 noted that SEAN 2.0 was “definitely easier to

navigate and more user-friendly in terms of getting started with the simulator.” This

researcher later informed us via personal communication that they were able to suc-

cessfully set up and use SEAN 2.0 to submit a paper for publication without our

involvement. In contrast, when the user was using SEAN 1.0, we made many small

changes to the SEAN 1.0 system to support their workflow.

Based on the helpful feedback from our users, we made a number of improvements

to SEAN 2.0. First, we tuned the parameters of our social forces model to decrease

pedestrian-on-pedestrian collisions. Second, we improved the documentation for sys-

tem setup and the integration of new robot policies. Third, we fixed several bugs,

including adding localization information for two robot components and resolving an

edge case where the robot’s physics simulation was unrealistic when it collided with

a pedestrian.

After incorporating this initial feedback, we shared the system with three more

researchers at Yale University. One said that the system was “easy to use,” another

mentioned that they did not run into any issues while using the system, and another

noted that “I can see how one would be able to implement their own controller through

this [system].”

4.5.2 Emergence of Social Situations

We studied the distributions of social situations in three datasets collected from SEAN

2.0, where each dataset corresponded to a different method of pedestrian control.

Data Collection

Sensor data and robot control information were collected in SEAN 2.0 while a hu-

man expert navigated the robot in the warehouse environment using a joystick. The

expert was first familiarized with the analog joystick controls and then directed to
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navigate the robot to the goal in a polite manner, similar to the way they would

navigate in real life. One hour of data was collected for each of the three proposed

methods of pedestrian control: random, handcrafted, and graph-based. The random

and graph methods were configured with an equal number of pedestrians (n = 62).

The handcrafted scenarios had a variable number depending on the scenario’s design,

but on average, they had far fewer pedestrians (n ≈ [5, 10]) due to the time and effort

required to manually specify behaviors.

The social situation classifiers described in Section 4.4.7 were parameterized as

follows. The maximum distance at which two agents were considered nearby was

D = 2.4m, within Hall’s personal space [101]. The minimum speed of an agent

considered to be walking was V = 1.4m/s, near the average human walking speed.

We set a small error value A = π
12

= 15◦ within which a pedestrian trajectory was

considered parallel or perpendicular to the robot.

During data collection, robot tasks were chosen to induce the robot to experience

a uniform distribution of social situations depending on the method of pedestrian

control. For the random method, we used the RandomABNav task for the entire

hour of data collection. For the handcrafted method, we collected 12 minutes of

data from each of the 5 robot tasks designed to correspond to the 5 social situations

formalized in Section 4.3. For the graph, we collected data evenly between the Join

Group and Leave Group robot tasks.

The collected data was divided into examples composed of 5 depth images, a local

navigation plan with 5 points of the expert’s most recent trajectory sampled at 1hz,

Table 4.1: Percentage of examples belonging to each social situation.

Social Situation
Behavior Cross Path Down Path Join Group Leave Group Empty
Random 14.51% 24.68% 0% 0% 66.44%

Handcrafted 0.73% 0.74% 3.43% 13.48% 81.62%
Graph 13.24% 22.08% 12.09% 19.51% 33.08%
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a search-based global plan with the 10 nearest points between the robot position and

the goal (where each point was at least 0.5m apart). Each example also contained

five boolean flags corresponding to the social situation classifiers.

Results

Table 4.1 shows the distribution of social situations between the three datasets gen-

erated using SEAN 2.0 with different methods of pedestrian control. The number of

examples in which the robot experienced the five social situations were not evenly

distributed with the Handcrafted Behavior approach, even though we collected data

for an equal amount of time in each Handcrafted scenario. In the Random pedestrian

dataset, groups did not form, so no Join Group or Leave Group social situations

were experienced. However, social situations were more evenly distributed among the

Cross Path, Down Path, and Empty scenarios in comparison to data from the Hand-

crafted scenarios. The Behavior Graph dataset led to a more uniform distribution of

social situations than the Handcrafted or Random datasets.

4.5.3 Evaluation of Navigation Algorithms

Experimental Setup

Whereas SEAN 1.0 [267] was evaluated using only the ROS navigation stack, we

evaluated SEAN 2.0 as a benchmarking platform using two robot navigation methods:

the ROS navigation stack with social cost layers [162], and a neural network controller

following [207] (using depth images rather than LIDAR as input). For the latter

method, we trained three controllers using each of the datasets created with the

three different methods of pedestrian control outlined in Section 4.5.2. This was not

possible with SEAN 1.0 because SEAN 1.0 only supported one method of pedestrian

control.

We trained the neural network controllers end-to-end using PyTorch with equally
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Figure 4.4: Select results for 4 policies in 3 scenarios aggregated over 123 episodes. The
three learned policies are trained on data from the Behavior Graph (G), Random (R), and
Handcrafted (H) methods of pedestrian control. We also evaluate the ROS Navigation (N)
policy with social cost layers [162]. Three metrics are shown: Completed Tasks (A), Time
Not Moving (B), and Intimate Distance Violations (C and D). Values for Time Not Moving
are computed in seconds and averaged over all episodes. All other plots show the total or
average count of the occurrences of the metric over all episodes. The percentage gain for
a specific metric can be calculated between grid cells. For example, the Behavior Graph
policy spends 55% less Time Not Moving than the Handcrafted policy when rolled out in
the Behavior Graph environment.

weighted losses for the local planner and velocity controller modules. We used the

AdamW optimizer with the default parameters, lr=0.001, wd=0.010, and a batch size

of 1024 for all experiments. A search over a range of batch sizes ({128, 256, 512, 1024})

revealed similar performance so we chose a batch size which used the maximum

amount of GPU memory, effectively decreasing the time required to train over a

single epoch of the data. The training machine had 128GB of RAM, an Intel Xeon

W-2155 CPU clocked at 3.30GHz, and an NVIDIA RTX 2080TI GPU. An early

stopping window of 50 epochs was used after trying between 10 and 100 epochs. The

loss did not always reach a local minima at 10 epochs, but the loss stabilized far

before 100.

Results

Neural network navigation policies trained on the Handcrafted (H) dataset completed

a similar number of episodes as policies trained on the Behavior Graph (G) data.

Across all rollout environments, the average number of Completed Tasks was 112.7
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for both H and G, as computed over the columns of Figure 4.4A. However, polices

trained on Handcrafted (H) data spent more time on average not moving than the

policies trained using the Behavior Graph (G) method. The policy trained using

Random (R) pedestrians paused for less time on average than the policy trained on

Handcrafted (H) data, but paused for more time on average than the policy trained

using the Behavior Graph (G). All learned policies spent less time not moving than

the ROS Navigation Stack (N). The average Time Not Moving per policy was 16.3s

for R, 22s for H, 11s for G, and 28.7s for N, as computed over the columns of Figure

4.4B.

Intimate Distance Violations were more numerous for policies rolled out in the

scenarios with the Behavior Graph (G) compared to the scenarios utilizing Random

(R) and Handcrafted (H) pedestrians. The average number of Intimate Distance

Violations per rollout scenario were 2.5 for G, 1.9 for R, 1.0 for H, as computed over

the rows of Figure 4.4C. Dissecting the data by social situations in Figure 4.4D, we

see the increase in violations in the Behavior Graph rollout scenario occurred mainly

in the Cross Path and Down Path social situations. This type of analysis suggests

that performing data augmentation for a learned policy and adjusting the training

data distribution to include more samples from the under-performing social situation

could increase performance. Additionally, dissecting metrics by social situation allows

researchers to interrogate controller performance in specific contexts. For instance,

delivery robots may need to be especially skilled at navigating down busy pathways in

warehouse settings. Note that splitting the data by social situation was not possible

in SEAN 1.0 as it did not contain a concept of social situations.
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Figure 4.5: Virtual Reality (VR) capabilities incorporated into SEAN 2.0. A user controls
an avatar through the VR interface in the Social Environment for Autonomous Navigation
(SEAN).

4.6 Virtual Reality Capabilities in SEAN 2.0

We integrated Virtual Reality (VR) capabilities into SEAN 2.0 to enable user-centered

studies of social robot navigation in immersive 3D environments. As shown in Fig-

ure 4.5, users can control a virtual avatar and look around using a head-mounted

display (HMD) and VR controllers, creating a more engaging experience than tradi-

tional mouse-and-keyboard simulators.

While gaming remains the most common application of consumer-grade VR de-

vices [305], VR is increasingly used in human-robot interaction (HRI) research to

study how humans perceive and respond to robots in socially complex environ-

ments [164, 288]. Prior work has used VR to predict gaze behavior [112], improve

communication [287], and enable telepresence control [134].

Our VR-enabled SEAN 2.0 allows researchers to simulate crowded environments

with virtual pedestrians, offering a safe testbed for early-stage or exploratory algo-
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rithms that lack formal safety guarantees, such as learned navigation policies [205,

207, 202]. This mitigates the risk of physical harm while preserving realism.

Evaluating social navigation performance often relies on subjective user feedback,

such as perceptions of social appropriateness [89]. VR can enhance these evaluations

by providing a more immersive and ecologically valid experience. Our system supports

the broader adoption of VR in HRI research and can help address open questions

about its methodological impact [294, 158].

4.7 Summary

SEAN 2.0 is a simulation platform designed to support the development and eval-

uation of socially compliant navigation algorithms in densely populated, dynamic

environments. Motivated by the need for robots to adapt to diverse social contexts,

SEAN 2.0 introduces a formalization of social situations and a range of features that

enable rich, socially-aware interactions. These include customizable sensors, multi-

ple navigation metrics, flexible task specification mechanisms, a suite of logic-based

classifiers for recognizing social situations, and diverse pedestrian control strategies.

A key contribution is the introduction of the Behavior Graph, a new mechanism

for specifying pedestrian behavior that supports both efficient scenario design and

the emergence of varied, realistic social situations via complex pedestrian motion

dynamics.

Critically, SEAN 2.0 includes a psychologically grounded model of social con-

text, inspired by work in Social Psychology [13], which is operationalized through a

rules-based classifier. This enables the system to recognize and label Social Situa-

tions during simulation, facilitating the study and evaluation of socially aware robot

behavior.

To support user-centered evaluation, we also developed VR features for SEAN,
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adding a virtual reality extension to the platform that allows participants an immer-

sive VR experience in which they can respond to robot navigation behavior from a

first-person perspective.
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Chapter 5

How Do Robot Experts Measure

Social Robot Navigation?∗

The ability to characterize and identify Social Situations is critical for the fair eval-

uation of different robot navigation policies that are designed to operate across a

wide range of environments and under varying conditions. Once similar Social Situa-

tions can be identified, specific metrics can be applied to compare robot performance

across evaluation runs. However, it is essential to ensure that the most relevant met-

rics are selected for each context and thereby align the user’s goals with the measured

robot performance. To better understand what metrics matter most, in this chapter

I present a study in which we conducted structured interviews with social navigation

experts from both industry and academia. Experts were asked to rank the impor-

tance of ten commonly used social navigation measures and respond to open-ended

questions about evaluating social navigation. A key insight from these interviews is

that subjective human feedback plays a critical role in evaluation. Notably, avoid-

ing collisions was the only universally important metric identified, highlighting the
∗Parts of this chapter were originally published as Nathan Tsoi, Jessica Romero, Marynel

Vázquez. (2024). How Do Robot Experts Measure the Success of Social Robot Navigation? In Com-
panion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) [275].
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foundational importance of safety. Beyond that, experts expressed varying priorities

that depended on their application domains. Based on these findings, we recommend

that social navigation algorithms first prioritize safety. Beyond this, social naviga-

tion algorithms should be evaluated using the most relevant metrics, which must be

carefully selected by users given their application domain and specific goals.

5.1 Introduction

Mobile robots operate in a wide range of settings. Prior works have studied social

navigation in settings that encompass airports [278], labs [271], and museums [107].

The number of pedestrians near the robot can range from a single person or a few

people [202] to crowds of people [7]. The task is often A-to-B navigation, from one

position to a goal position, but can also include delivery [151, 185], guiding [105,

28], following [94], serving as a receptionist in a building [93] and interacting with

groups [266, 303]. Such a wide variety of social situations makes it challenging to

compare different social navigation approaches.

Inspired by the wide range of social situations and corresponding approaches to

social navigation, we asked if users of different approaches have different requirements

and priorities. There are many different measures used to evaluate social navigation

approaches [176, 87]. We hypothesized that users of social navigation robots in dif-

ferent application domains are concerned with different aspects of performance when

evaluated based on how they prioritize different evaluation metrics. For example, a

robot delivering blood for a patient procedure in a hospital may be most concerned

with taking the minimum time to deliver the blood. In contrast, a large and dan-

gerous industrial robot in a warehouse may be more concerned with staying a safe

distance from everyone in the warehouse.

To better understand how users value and prioritize the behavior of social naviga-
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tion robots, we interviewed 8 roboticists working in the field of social navigation. The

8 individuals we interviewed were contacts at 8 robotics companies and research labs.

They were experts in social navigation working in areas including autonomous de-

livery, hardware development, space robotics, data analytics, warehouse automation,

and academic research.

5.2 Related Work

Many different evaluation measures have been proposed to evaluate social navigation

approaches. Measures can be quantitative or qualitative; the latter typically focuses

on human perception of robot behavior. We refer the reader to surveys that discuss

these measures in detail [176, 87]. In the broader field of Human-Robot Interaction

(HRI), common metrics have been reviewed by Steinfeld et al. [235]. In this work,

we refer to both metrics and measures as “measures” due to the fact that many

“metrics” used in social navigation and HRI do not adhere to the properties of a

proper mathematical metric space. We chose to ask interviewees to rank some of

the most common [87, 235] and readily available measures [273] covering navigation

performance and social perception. We also asked open-ended questions to determine

what other measures the interviewees prioritized.

Fairly evaluating different approaches to social navigation requires consideration

of many factors, which are outlined by Francis et al. [87], including experimental

design, evaluation measures, the social situations used for evaluation, benchmarking

against other methods, datasets used, and simulators. Our interviews focused on the

evaluation measures, but during the open-ended question portion of the interviews,

some individuals mentioned other components they considered important, including

their datasets, simulators, and how they designed experiments and incorporated end-

user feedback.
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5.3 Method

Social navigation robots work in a wide range of application domains and users in

these different application domains may be concerned with different aspects of a

robot’s performance. We interviewed 8 individuals from industry and academia to

better understand the priorities of users in different application domains. Our protocol

was approved by our local Institutional Review Board and refined through pilots.

5.3.1 Hypothesis

Our hypothesis is that users in different application domains of social navigation

robots are concerned with different aspects of performance when evaluated based on

how they prioritized different evaluation measures.

5.3.2 Recruitment

We recruited participants using personal communication methods including email and

LinkedIn. We initially identified 25 organizations and established a point of contact

at each. From the initial pool, 4 organizations were removed because their robots did

not perform social navigation. From the remaining 19 organizations, 8 agreed to take

part in the study and complete the interview. The representative of 1 organization

did not complete the open-ended questions portion of the interview, but did rank

the measures we provided. We include their ranking of the 10 measures we provided

in our results. One respondent reverse-coded the rankings, which we corrected and

included in our results.

5.3.3 Interviewees

We interviewed contacts at 8 organizations that addressed markets including space

robotics, food delivery, general-purpose delivery robots, operations logistics, service
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robots, education, and computer vision for mobile robots. The individuals who par-

ticipated in our interviews were from a range of roles within the organizations and

held titles such as software lead, head of staff, head of AI and robotics, senior applied

scientist, senior scientist, assistant professor, and Chief Executive Officer. Of these

individuals, one was working at an academic institution and the rest worked at com-

panies, startups, and industry research labs. Some individuals we interviewed who

were working in industry previously worked as academic researchers and professors.

The individuals we interviewed included people from two different countries, Spain

and the United States of America. Within the USA, people were spread out across 7

different states.
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Figure 5.1: Two plots that show the measure ranking results visualized in different ways.
(a) Ranking of social navigation evaluation measures by interviewee. Where 1 corresponds
to the most important and 10 corresponds to the least important evaluation measure. (b)
Interviewees who assigned the same rank to a metric where the bar length indicates the
number of interviewees who assigned a given rank (x-axis) to each measure (color). Best
viewed digitally.

5.3.4 Procedure

We collected data by conducting semi-structured interviews over 30-minute video calls

using the Zoom teleconference platform. All of the information that we collected was

anonymized to disassociate responses from any individual or company. Interviews for

the study were conducted by the same research assistant and followed a predetermined

script which had 5 main phases.

Interview Start (1): The interview began with the interviewer introducing her-
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self and the following statement regarding our goal for the study: “We are conducting

a study on robot navigation with the goal of collecting information about how different

groups and companies are measuring success for mobile robots capable of navigating

with or around people. We are specifically interested in learning more about how

success is determined for different robots.”

Voluntary Participation (2): Each participant was told that participation

in the study is voluntary and they are free to decline to participate or end their

participation at any time.

Recording Consent (3): Each participant was asked for consent to record the

video call and transcribe the audio to text for the sole purpose of coding the interview

questions.

Interview Questions (4): Following verbal confirmation of their agreement to

participate in the study, each participant was then asked 14 questions which included

demographic information, the business market their organization serves, and ques-

tions about how they measure success in social navigation. This included a question

that asked the participant to rank 10 measures commonly used in social navigation.

The 10 measures were: completed navigation goals, path length, minimum distance

to target, final distance to target, time not moving, path irregularities, path efficiency,

distance violations, intimate distance violations, and collisions. We also asked open-

ended questions about the success of social navigation. The exact wording of these

questions is detailed in Table 5.1.

Interview End (5): The interview ended with an open-ended question regarding

the participant’s other thoughts surrounding the topics discussed during the call.
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Category Question
Demographic What is your name and which organization do you represent?
Demographic What is your role at this organization?

Market What market does the company serve?
Success Please rank these 10 metrics from most to least important. If there are additional metrics, you will be able to share them after this ranking.
Success Are there other metrics used to measure success not in the list ranked?
Success How would you rank their importance?
Success How would you rank them relative to the metrics we provided?
Success Do you consider the robot’s navigation system as the main metric for success or are there other metrics outside of navigation that determine success?
Success In what ways has your robot’s navigation been changed when being around people to meet the demands of the application domain or market?
Success Are subjective human opinions a success metric? If so, to what extent?
Success Is there value in this [subjective] metric?
Success What would you consider necessary changes still needed to improve the success of your robot?
Success Are there changes still needed to be made to robots in your domain generally to improve their success in navigating around people?

Table 5.1: List of questions by category asked to participants during the video interviews.

5.4 Results

We hypothesized that users of social navigation approaches in different application

domains are concerned with different aspects of performance when evaluated based on

how they prioritized different evaluation measures. We asked participants to rank 10

measures commonly used to evaluate social navigation approaches, shown in Figure

5.1, from most (1) to least important (10). While we did see variation in most

rankings, the collisions measure was surprisingly ranked most important by all but

one participant.

We performed a qualitative analysis of the open-ended interview questions by

aggregating them and identifying themes in the responses. This process revealed

the same phenomenon. Across all interviewees, the primary concern was safety, but

after this consideration, priorities varied widely. Interviewees’ primary concerns, after

safety, included their robot’s ability to localize, user privacy, communication (via

lights, speech, and motion), task throughput, engineering time required to recover

from an error, the interpretability of motion, and enjoyability of interacting with the

robot.

The variation in interviewee considerations indicates that a wide range of evalu-

ation measures are appropriate for handling the wide range of social situations that

robots encounter. Quantitative measures are necessary to evaluate social navigation

approaches from the perspective of task performance. Qualitative measures can be

used to measure how end-users perceive the performance of the robot, which is im-
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portant for evaluating social considerations such as interpretability and enjoyability

of interaction with the robot.

We observed the hypothesized differences in priorities across application domains,

which were reflected in different evaluation measures. We also observed a difference

in priorities given different roles within an organization. Individuals involved in the

engineering and design processes were first concerned with the lower-level behavior of

their robot. Individuals in leadership roles were more concerned with task-level and

organizational-level goals. We saw this difference primarily in the open-ended ques-

tions, where engineers and designers were concerned with the lower-level measures

commonly used in social navigation, while institutional leaders were interested in

measures that related to organizational-level financial success, such as task through-

put and minimizing engineering time.

5.5 Limitations

Our study had several limitations. First, while all interviews were conducted via

Zoom, one interview ran over time and responses to some questions were emailed to

the interviewer following the Zoom call. Another limitation is that we did not pro-

vide detailed descriptions of the evaluation measures. For example, we did not define

the difference in distance between intimate distance violations and simple distance

violations, but instead stated that intimate distance violations were when the robot

came closer than a distance violation. We chose to omit details such as precise dis-

tances because we wanted to avoid biasing participants’ responses given interviewees’

different use cases. Finally, although we interviewed 8 individuals from a wide range

of organizations, further interviews could be conducted in the future.
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5.6 Summary

Our hypothesis was that users in different application domains of social navigation

robots are concerned with different aspects of performance when evaluated based

on how they prioritize different evaluation measures. To evaluate this hypothesis,

we interviewed 8 individuals from both academia and industry who are experts in

social navigation. Data collected during these interviews showed that our hypothesis

was partially supported. While minimizing collisions was almost universally the top

priority, all other measures varied in priority across application domains. This was

also supported by responses to open-ended questions, which showed a variation in

priorities across application domains. Moreover, interviews revealed that there was

also a difference in priorities between people at different levels of an organization.

5.7 Discussion

Given the difference in priorities regarding robot behavior across application domains

and roles within an organization, we make three recommendations for the development

and evaluation of social navigation algorithms. First, while most evaluation measures

are prioritized differently, avoiding collisions is a near-universal goal. Therefore, all

approaches to social navigation should first aim to ensure safety by utilizing an eval-

uation measure such as minimizing the risk of collision. Second, users in a given

application domain should evaluate their robots using measures that matter most to

their domain. If users in different domains were to share the prioritization of evalu-

ation measures, this could serve as a starting point for collaboration between users

who have common goals. Finally, open-ended questions showed that interviewees

were also interested in subjective metrics that may help evaluate the social aspects

of a navigation robot’s performance.
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Chapter 6

Scalable Data Collection for Social

Robot Navigation∗

Recognizing that subjective human feedback is a critical component of evaluating so-

cial robot navigation, this chapter presents the SEAN Experimental Platform (SEAN-

EP). SEAN-EP is a tool for collecting human responses to robot navigation behavior

through interactive, online simulations embedded in surveys.

6.1 Introduction

Social robot navigation is a critical task for robotic applications such as service

robotics [256, 80, 264], healthcare [44], and education [5, 128]. Thus, social robot

navigation has long been studied from a technical and experimental perspective

[138, 162, 261, 173, 144]. Yet, there is no agreed-upon protocol for evaluating these

systems because: (a) robots often have different capabilities, making comparisons

difficult; (b) implementing robust navigation systems is hard, thus baselines do not
∗Parts of this chapter were originally published as Nathan Tsoi, Mohamed Hussein, Olivia

Fugikawa, J.D. Zhao, Marynel Vázquez. (2021). An Approach to Deploy Interactive Robotic Sim-
ulators on the Web for HRI Experiments: Results in Social Robot Navigation. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) [270].
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necessarily represent the state of the art; and (c) there is a lack of standard human-

driven evaluation metrics because the context of navigation tasks can significantly

alter what matters to users [163, 260]. These issues have hindered advancements and

make it difficult to understand the key challenges that the social robot navigation

community faces today.

While simulations may not be perfect replicas of the real world, I believe that

they provide a viable path towards standardizing the evaluation of social robot nav-

igation systems in Human-Robot Interaction (HRI). Our rationale is twofold. First,

simulations have long been leveraged to conduct early tests, stress tests, and ver-

ification of robotic systems [192, 198, 236]. They provide controlled environments

to systematically study critical application scenarios, and can be used for bench-

marking [166, 1, 2, 3]. Second, simulations can be integrated with real-time robotic

software, facilitating sim-to-real transfer. For example, interfaces for the Robot Op-

erating System (ROS) have enabled running robot stacks in a variety of simulators

[248, 232, 116, 250].

Given prior work in robotics simulations, what is the key challenge that prevents

us from fully leveraging simulations for evaluating systems in HRI? The problem is

that the evaluation requires human input because the social aspects of robot navi-

gation are subjective in nature. One option for gathering human input is to utilize

web-based surveys and crowd workers. However, modern simulations are compute-

intensive applications designed for local use in a desktop computing environment.

That is, these simulators are rich-client applications that provide rich functionality

independent of a remote server – in contrast to thin-client applications which are

heavily dependent on remote processing, like browser-based web applications. This

makes the modern simulators inaccessible to crowd participants who are limited to

browser-based web applications.

Making a rich-client application, like a robotics simulation, available on the web
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Figure 6.1: With SEAN-EP, researchers can scale HRI experiments in the context of
navigation via 3 steps: (1) experimenters specify navigation tasks in the simulator, (2) they
integrate interactive simulations based on the tasks with online surveys, and (3) they collect
data in parallel from multiple users. See the text for more details.

is a non-trivial task. Perhaps one could think of re-implementing the software under

the constraints of a web browser [247] and application-specific or web server-specific

modules such as [55]. However, some re-implementations are too complex, time con-

suming, or even infeasible due to the lack of specific dependencies such as a program-

ming language, physics engine, or rendering engine. Another option could be to use

specific solutions that make applications such as word processor programs available

in a web browser [55]. Unfortunately, these solutions do not generalize well to robotic

simulators that require high performance graphics rendering via specialized hardware

and libraries such as OpenGL. These challenges have often restricted human evalu-

ation of social robot navigation via crowd-sourcing to video surveys (e.g., [207, 22]).

While videos may lead to comparable results to in-person studies in some cases [295],

they are passive media with low interactivity [301].

In this chapter, we propose a method of making rich-client, interactive robotic

simulators accessible at scale on the web. As an example implementation, we in-

troduce the SEAN Experimental Platform (SEAN-EP), an open-source system that

allows roboticists to gather human feedback for social robot navigation via online

simulations (Figure 6.1). Though our implementation uses the Social Environment

for Autonomous Navigation (SEAN) [267] as the underlying simulator, any rich-client

simulator that runs in Linux could be deployed using our method.

We validated our implementation and its usability through an online study about
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social robot navigation. Further, we investigated whether human perceptions of

robots differ based on whether they experience human-robot interactions via online

simulations or watch them through videos. Interestingly, our results suggest that

interactive surveys are less mentally demanding than non-interactive video surveys.

In summary, this chapter makes four main contributions:

1. A novel approach to deploy rich-client robot simulation environments at scale

using standard web technologies. This method allows one to quickly gather

human feedback in HRI.

2. SEAN-EP, a specific instantiation of the proposed approach based on the So-

cial Environment for Autonomous Navigation. SEAN-EP is open-source and

available online.∗

3. Validation of our example implementation (SEAN-EP) through an online study

about social robot navigation.

4. An experimental comparison of interactive simulations and videos for studying

human perception of robot navigation.

6.2 Related Work

6.2.1 Robotics Simulation Environments

Progress has been made on developing photorealistic simulations which bridge the

gap between virtual worlds and reality [297, 4]. With their high visual fidelity and

responsiveness, game engines such as Unity and Unreal Engine have proved indispens-

able to robotic simulation of flying and mobile robots [232, 116, 142, 98]. Several of

these simulation environments integrate with ROS to achieve realistic robot control

and transfer results to the real world.
∗https://github.com/yale-sean/social_sim_web
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Within social robot navigation, crowd simulation and modeling of pedestrian be-

havior have improved as well [246, 72, 15]. However, there has been less work on

combining crowd models with robotics simulation for robot navigation in human en-

vironments. One exception is the Social Environment for Autonomous Navigation

(SEAN) [267], which we leverage in our work. SEAN builds on Unity and integrates

with ROS, making it a good option in terms of photorealism and future sim-to-real

transfer.

Modern robotics simulations are rich-client applications meant to run on a desktop

computer or a powerful gaming laptop. While some simulators may utilize frameworks

that provide the option to compile to WebGL for deployment on the web, like Unity,

there are many challenges and limitations to this approach. This includes lack of direct

access to IP sockets fromWebGL due to security implications, limitations in rendering

and illumination, lack of threading in JavaScript, and limited access to hardware [21].

While specific limitations can be addressed via engineering workarounds on a case-by-

case basis, this approach lacks the flexibility of our method. Our method works with

any kind of rich-client simulation that runs in Linux, even if it requires interacting

with other software such as ROS components.

6.2.2 Leveraging the Web in HRI

While traditional HRI experiments are conducted in person, prior work has explored

faster mechanisms that leverage the accessibility of the Web. For example, [61] ex-

plored using a two-player online game to build a data corpus for HRI research. Also,

[220, 188, 300] developed web-compatible simulations based on Unity and WebGL,

although these systems have the limitations discussed in Section 6.2.1.

Especially during early HRI system development, it has become common practice

to gather human feedback via online video surveys [311, 249, 76, 207, 22]. Research

has indicated that there is a moderate to high level of agreement for subjects’ pref-
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erences between live and video HRI trials [295]. Our work contributes to a better

understanding of experimental methods by comparing human feedback from a video

survey with feedback from an interactive survey.

Our approach is inspired by internet frameworks that provide methods to remotely

interact with robotic systems and simulators. For example, the Robot Management

System (RMS) [258] and Robot Web Tools [259] provide software for building web-

based HRI interfaces and demonstrate their approach in a variety of tasks, including

remote robot operation. These tools allow web clients to interface with ROS and the

Gazebo simulator by transforming ROS-specific data streams into formats compatible

with a web browser. While ROS applications can be made accessible on the web via

RMS, our approach is relevant to all kinds of rich-client simulators that run on Linux,

not just Gazebo.

Lastly, RoboTurk [168] allows for rapid crowdsourcing of high-quality demonstra-

tions for robot learning in the context of manipulation. While our method could

be used in the future to gather data for learning navigation policies through tele-

operation, in this chapter we explore giving users control of a human avatar in the

simulation. This methodology aims to bring their online, virtual experience closer to

real-world human-robot interactions.

6.3 Method

We propose a general approach to deploy the graphical user interface (GUI) of rich-

client robotic simulators on the web to facilitate and scale HRI experiments. Our

approach builds on standard tools for graphical desktop sharing in Linux. It does not

require the adaptation of rich-client simulators to other technologies, such as WebGL.

With our approach, researchers can create interactive HRI surveys. These are sur-

veys that, in some parts, include simulations in which the participant interacts with a
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Figure 6.2: Screenshot of Qualtrics survey with embedded SEAN simulation. Best viewed
in digital form.
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robot. Figure 6.2 shows an example online survey used to study social robot naviga-

tion. This simulation was embedded in the survey using a particular instantiation of

our approach, as later described in Section 6.4. After the simulations end, the online

survey can query the participant for explicit feedback about his or her experience

interacting in the virtual world.

Importantly, our method addresses parallelization challenges inherent to online

studies typically run via crowdsourcing platforms. While simulation systems for in-

person HRI studies are usually designed for one participant at a time, online surveys

must cope with a potentially large number of people who participate in the study

simultaneously. Our method provides a mechanism to scale simulations designed

for a single user to many users in parallel. This is possible without changes to the

underlying system.

The next sections describe in detail our method to make rich-client robotics sim-

ulations accessible on the web. We evaluate an implementation of this approach in

Section 6.5.

6.3.1 Making Interactive Simulations Accessible on the Web

We propose to make rich-client simulations available in a standard web browser by

running them on a remote server, and using a Virtual Network Computing (VNC)

server to share the GUI of the simulator with a remote user.

While remote users typically connect to a VNC server via a desktop VNC client

running on their machine, we use a browser-based VNC client running on the host

server to allow browser-based access to the simulator GUI. The browser-based VNC

client renders the GUI on a web page, through which our system can accept user

input for the simulator, e.g., keyboard commands.

One important consideration when exposing the GUI of a simulator on the web,

as described before, is that users are unauthenticated and untrusted. Thus, it is
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important that the GUI of the simulator does not provide mechanisms to launch

other processes on the remote server.

Because VNC connections are designed to be used by a single user, we propose the

use of a web-based process orchestration tool to deploy and manage a large number of

concurrent simulation environments. We call this tool the “Process Manager” because

it controls the execution of processes associated with each simultaneous user. This

tool is further described in the next section, where we explain in detail how to scale

data collection on a single host.

6.3.2 Scaling on a Single Host

To scale human feedback collection, we can run multiple instances of the simulator

on the remote server and provide individual remote users access to one of them.

Figure 6.3a illustrates how we achieve this goal using a reverse proxy server and a

Process Manager. The Process Manager is responsible for managing user sessions,

which include an instance of the simulator (including its GUI), all other components

necessary for the simulator to run, and a VNC server and browser-based client for

the given user.

The reverse proxy routes web requests that are received via Hypertext Transfer

Protocol Secure (HTTPS) to specific web servers on the host machine based on the

URL path of the request. The target web server may be the Process Manager, which

is in charge of initiating, maintaining, and terminating user sessions, or an existing

web-based VNC client within the user’s session.

Requests for simulations should have a specific URL path that includes a parame-

ter for a unique user identifier, e.g., a Mechanical Turk ID. Additionally, they should

include any other parameters needed to instantiate the simulation for the user. For

instance, in the example implementation described in Section 6.4, the requests include

start and goal poses for a user’s avatar and a robot in the simulation.
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When the Process Manager receives a request from the reverse proxy, it evaluates

if it is a new request given the URL parameters. If that is the case, then the Process

Manager launches the main components that make up an interactive simulation ses-

sion and quickly redirects the request to the page of the web-based VNC client that

corresponds to the user. Because the VNC web page is served on the same host, the

reverse proxy gets the request that results from the URL redirection and appropri-

ately routes it so that the user’s web client can display the simulation’s GUI. If an

existing user requests a running simulation, the Process Manager simply redirects the

request to the corresponding VNC URL.

The Process Manager is also in charge of managing the maximum session du-

ration. Sessions are allowed to run for a configurable amount of time before being

automatically shut down. Once a session is closed, the resources can be re-allocated

to new sessions for other users.

Handling simulation requests as described above is beneficial in 3 key ways: (1)

it is easy to integrate simulations with online surveys because a single web address

(with parameters) is used to handle all requests; (2) the entire connection between

a remote user and the host machine is encrypted over an HTTPS connection; and

(3) because the reverse proxy is routing requests rather than having users connect

directly to each VNC instance, there is no need to expose many non-standard internet

ports on the host.

Crucially, this method allows a single host to handle the multiple concurrent

requests required of an online study, where many users need access to interactive

sessions to complete surveys.

6.3.3 Scaling Across Many Machines

Scaling of simulator sessions on a single host machine is limited by the hardware

resources on the host. The ability to scale users’ sessions across many machines, or
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(b) Our method running on multiple machines. Each host has all the components shown in Fig.6.3a.

Figure 6.3: Proposed methods to render the GUI of rich-client simulations on the web and
scale HRI data collection.

scale “horizontally,” removes this limitation.

Horizontal scaling can be achieved by adding a Load Balancer to our proposed

system. The Load Balancer receives user requests and then acts as a “traffic cop” to

evenly distribute the requests to the available host machines, as illustrated in Figure

6.3. This routing process must be “session aware” to associate users to the same host

machine if they perform multiple requests.

With the guarantee that a single host will receive all requests for a unique user, the

system state does not need to be shared across hosts, but can be managed in the same

way as described in Section 6.3.2. Moreover, new hosts can be added dynamically to

handle more concurrent sessions by simply notifying the Load Balancer.
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6.4 SEAN-EP System

We created the SEAN Experimental Platform (SEAN-EP) in order to validate our

method (Section 6.3) in the context of social robot navigation. Our goal was to test

our method’s feasibility in a realistic usage scenario and, through this effort, verify

the key tenets of scalability and usability.

SEAN-EP uses SEAN [267] as the core simulator. SEAN provides photorealistic

virtual worlds, crowd simulations for social robot navigation, and integration with

ROS for robot control. We modified SEAN to use the Microsoft Rocketbox avatars

library [95] for this work because these avatars are higher-quality than those used in

[267].

6.4.1 System Implementation

We implemented our method as an open-source system and deployed it to virtual

hosts with dedicated NVIDIA T4 GPUs using Amazon Web Services (AWS). We

aimed to maximize the performance of our system and fully utilize the hardware

resources to deliver a user-friendly and visually appealing simulated interaction that

is free of glitches or lag. To this end, we chose TurboVNC as the VNC server,

which accelerates data transfer by compressing images via libjpeg-turbo. We made

TurboVNC available on the web using noVNC with websockify.† Notably, TurboVNC

also supports VirtualGL for hardware-accelerated 3D graphics.

We used the open-source NGINX server as a reverse proxy and implemented the

Process Manager using the popular Flask web framework. We developed a custom

configuration for NGINX to properly route requests as specified by the Process Man-

ager. Also, we configured an AWS Application Load Balancer with sticky-sessions to

make it session-aware.

The Process Manager facilitates communication between the SEAN GUI and ROS.
†https://github.com/novnc/websockify

68

https://github.com/novnc/websockify


Because each session requires its own instance of ROS, we encapsulate ROS processes

in a Docker container and expose a single network port for the SEAN GUI to com-

municate with its ROS instance.

We used ROS bag files as the main logging mechanism for human-robot interac-

tions enabled by SEAN-EP.

6.4.2 Navigation Tasks

To evaluate our idea in practice and conduct an experiment about perceptions of

social robot navigation (Section 6.5), we designed three tasks for users to complete in

SEAN simulations. First, they had to find the robot. Second, they had to follow the

robot and observe its movements, which required them to stay in proximity to the

robot and observe its interactions with other people. Third, they had to navigate to a

nearby location in the environment identified with a visual landmark. This last task

incentivized them to navigate around the robot to reach their destination. Overall,

these tasks motivated users to both interact with the robot in the virtual world and

behave in naturalistic ways.

6.4.3 User Interface

We created a new user interface in SEAN to let a user control an avatar in the

simulation and make the virtual experience similar to real human-robot interactions.

We had two key requirements when designing the user interface: it had to be accessible

to a wide range of users, and it needed to be simple enough to be explained in a short

introductory tutorial. Given these requirements, we chose to implement an interface

that is similar to a third-person video game, albeit with simplified controls. The main

camera of the simulation follows the user’s avatar as it moves. Users can press the up

and down arrow keys to raise and lower the camera, changing the field of view of the

environment as needed. In addition, they can use the keyboard commands W, A, S,
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and D to move their character forward, left, backward, and right, respectively. These

keyboard commands were captured in the users’ browsers and seamlessly passed to

the SEAN simulation using noVNC.

6.4.4 Data Collection via Online Survey

With our system, SEAN simulations can be integrated with standard online survey

platforms via HTML iframe elements. The surveys can collect any additional data

from users, such as demographic data or answers to questions about their experience

in the simulations. An example is provided in the evaluation presented in Section 6.5,

for which we integrated SEAN simulations with a Qualtrics survey (Figure 6.2).

6.4.5 Performance

SEAN-EP provides users web access to interactive SEAN simulations with a small

amount of load time. When a user requests a new SEAN simulation session, the

Process Manager starts a complete ROS environment, the Unity-based simulator

GUI, and a VNC server and client. Despite all these many programs, the start-up

time for a user session is 18.9s on average. Transferring the simulator’s GUI to the

user’s browser through noVNC takes on the order of milliseconds with a low Internet

connection speed in the U.S. (e.g., on the order of 10 Mbps). This means that the

total wait time for users to access a SEAN simulation with SEAN-EP is significantly

faster than compiling SEAN Unity worlds to WebGL. The reason is that the worlds

are complex, resulting in simulations that are over 1.5GB in size after the compilation.

With a global average fixed broadband download speed of 77 Mbps, transferring a

single WebGL environment to the browser would take over 2.5 minutes.‡

‡Note that the complete SEAN simulation cannot be exported to WebGL due to ROS depen-
dencies. Thus, we only report the expected time that it would take to load the Unity world after
converting to WebGL.
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6.5 SEAN-EP Evaluation

We used a Qualtrics online survey to validate the potential of our method to gather

human feedback for social robot navigation. The survey included 6 interactive sim-

ulations, embedded through HTML tags, through which users could interact with a

Kuri robot. The next sections detail our experimental protocol and results, with a

special focus on user feedback obtained through the survey. Section 6.6 later com-

pares using this type of interactive survey versus a video survey to gather human

feedback about robot navigation. The protocols for these studies were approved by

our local Institutional Review Board.

6.5.1 Method

The Qualtrics survey was designed to gather feedback about robot navigation in two

simulated indoor environments. One environment was a warehouse that included

15 virtual humans, a Kuri robot, and the user’s avatar (Figure 6.2). The other

environment was a computer laboratory, which included one virtual human besides

the robot and the user’s avatar (Figure 6.1). The goal of the user in the simulations

was to first find the robot, then follow it for 30 seconds, and finally navigate to a

destination identified by a visual landmark.

Experimental Protocol. The survey began with a demographics section. Then,

the participants were asked to behave politely in the simulator and were in-

troduced to the task with a short simulation in the lab environment. This

simulation served as a tutorial to explain the commands that the participants

could use to move their avatar, identify Kuri, and practice navigation tasks.

After the tutorial, the participants experienced 6 simulations in randomized

order: 3 in the warehouse environment and 3 in the laboratory. For each simu-

lation, there were specific start and goal locations for all agents. In particular,
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the navigation goals of the robot and the human avatar were opposite to each

other, so that they would easily encounter one another at some point in the vir-

tual world. After each interactive simulation, the participants were asked a few

questions about their experience, including whether they were able to identify

the robot and whether it moved in the environment. At the end of the survey,

the participants were asked about their overall experience.

Robot Control. The Kuri virtual robot was modeled after the real platform man-

ufactured by Mayfield Robotics. It had a differential drive base and used a

simulated 2D LIDAR and odometry information from Unity to localize against

a known map. All path planning and execution were completed by the ROS

Navigation Stack, which used a global and local costmap for object avoidance

and social navigation around virtual humans [162]. We opted to use the Nav-

igation Stack because it is widely used by many robots, including TurtleBot

platforms, PR2, and the Clearpath Husky. Also, it is used as a classical base-

line and ground truth by more modern learning-based approaches [207, 56].

Participants. We recruited 62 participants through Prolific, a crowdsourcing plat-

form, for this evaluation. Participation was limited to individuals 18 years or

older, fluent in English with normal-to-corrected vision. The participants had

an average age of 32 years old and 29 were female. In general, the participants

were familiar with video games (M=6.1, σ = 1.1), but not as familiar with

robots (M=4.0, σ = 1.4) based on answers on a 7-point responding format (1

being the least familiar, 7 being the most familiar). They were paid $4.00 USD

for completing the survey.

System Architecture. Because our interest was testing the proposed system, we

ran participants under both strategies to scale simulations (Section 6.3). Half of

the participants experienced simulations running on a single host machine and
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thus were run in small batches to avoid overloading the host. The other half

interacted with simulations distributed across four machines. Virtual machines

were AWS g4 EC2 instances with 32 cores, 124GB of RAM, and 15.84GB of

GPU memory. Given the requirements of our simulation environment, each

machine was capable of running up to 30 interactive simulation sessions in

parallel, based on its GPU memory and the size of our SEAN environments. In

the case of scaling across many machines, we limited the number of sessions per

host below the resource-constrained maximum to 10. We also added enough

hosts behind the Load Balancer to accommodate the maximum number of total

simultaneous participants in our study.

6.5.2 Results

We were able to successfully gather data by using a single host machine as well

as multiple ones. With a single host, we ran on average 5 participants at a time,

collecting all 31 responses in about 8 hours. With the multiple host approach, we ran

all 31 participants at the same time and collected all 31 responses in 1.5 hours. As a

reference, the average participant took about 31 minutes to complete the survey.

While the multiple host approach effectively reduced the time that it took to

collect data through the surveys by 81%, it required more management overhead.

This included managing instances in the pool and moving collected data from the

machines to a shared store for analysis.

Task Completion. While not all participants followed the instructions by the book,

a large majority tried and were able to complete the given tasks, validating that

our system worked as intended. In only 23 of 372 interactive trials (6.18%), the

participant’s simulation session timed out before they reached their goal desti-

nation. Considering all 372 interactive sessions, there were only 8 interactive

sessions (2.15%) in which participants did not move from the starting position.
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Further inspection of the data revealed that the only two sessions in which the

participants failed to find the robot in the simulation corresponded to timed

out sessions in which their avatar moved. These simulations were in the ware-

house environment, suggesting that they tried to find the robot, but the large

space made it difficult for them to identify it. Because the study sessions were

conducted in parallel, at scale, they help confirm the scalability of our method.

Navigation Behavior. Using ROS logs from SEAN, we checked how often the hu-

man’s avatar and the robot were close to each other based on Hall’s proxemic

zones [101]. We set a threshold for intimate space of 0.45 meters, and found

that in 195 sessions (52.4%) the robot came within this distance from the par-

ticipant’s avatar. In terms of personal space, in 316 sessions (84.9%) the robot

came within 1.2 meters from the avatar. A benefit of simulations is that we can

easily analyze proxemic behavior as shown by these results.

User Experience. At the end of the survey, the participants reported that the sur-

vey tasks required low mental demand (M=2.26, SE=0.19) and low physical

demand (M=1.61, SE=0.15) on a 7-point responding format where 1 indicated

the lowest demand. They did not have to work hard to accomplish the tasks

(M=2.32, SE=0.18).

Some participants provided positive feedback for our system through open-

ended questions. For example, one person said that “the game was very well

made and the controls are what I’m used to with my own gaming.” Another

said they “found the instructions were easy to follow.” When asked if the vir-

tual world was confusing, participants strongly indicated it was not confusing

(M=2.03, SE=0.18). However, a few participants reported confusing elements

of the survey. Eight people believed the robot’s motion was awkward. Addition-

ally, 7 people thought that the control of their human avatar was unintuitive.
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As a reference, the participants had an average internet speed of 105.56 Mbps

(SE=11.09).

Overall, these results validate the feasibility of our method to enable online,

interactive HRI studies.

6.6 Interactive Simulation vs. Video Feedback

We compared the interactive human feedback obtained using SEAN-EP with feedback

obtained through a video survey, which is a typical approach to online HRI studies

as discussed in Section 6.2. To this end, we recruited 62 more participants through

Prolific. These participants provided feedback about the robot based on videos of the

simulations that happened as part of our prior study (Section 6.5).

6.6.1 Method

Experimental Protocol. We expanded our data from Section 6.5 with data col-

lected through a Qualtrics video survey. In general, the video survey followed

the same format as the prior one. However, instead of having participants in-

teract with the robot in a virtual world, each participant viewed the 6 video

recordings of the simulations experienced by a participant from our validation

study. After watching each video, they were asked about the observed robot.

Hypotheses. The data from Section 6.5 (Interactive condition) and the video survey

(Video condition) were analyzed together to investigate two hypotheses:

H1. The perception of the robot would differ between the conditions. To test

this hypothesis, we gathered ratings for the Competence and Discomfort

factors of the Robotic Social Attributes Scale (ROSAS) [48] (Cronbach’s

α was 0.938 and 0.746, respectively). We also gathered participants’ opin-
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ions on whether the robot navigated according to social norms after each

simulation session or corresponding video.

H2. The perceived workload for the survey in the Interactive condition would

be lower than in the Video condition. We measured perceived mental and

physical demand along with effort at the end of the surveys based on

responses to the following questions from the NASA Task Load Index [102]:

“How mentally demanding were the tasks?”, “How physically demanding

were the tasks?”, and “How hard did you have to work to accomplish what

you had to do?”. Responses were collected on a 7-point responding format

(1 being lowest, 7 being highest).

Participants. A total of 124 participants were considered for this experiment (62

from Section 6.5 plus 62 new participants). Their average age was 34 years

old and 55 of them were female. We limited participation in the same way as

Section 6.5. Participants were paid $4.00 USD for completing the survey.

6.6.2 Results

Human Perception of the Robot. There were 2 simulation sessions out of 372 in

the Interactive condition in which the participants failed to identify the robot,

and 53 sessions in which they said it was not moving. Meanwhile, there were

4 sessions out of 372 in the Video condition in which the participants failed to

identify the robot, and 51 sessions in which they said that it was not moving.

We excluded these sessions from further analysis about perceptions of the robot.

For the 288 pairs of sessions in which participants both saw the robot moving in

the simulation and the video condition, we conducted a Wilcoxon signed-rank

test for the paired data to check if the Competence and Discomfort factors from

ROSAS (in 7-point responding format, 1 being lowest and 7 being highest) dif-
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fered by condition. The test resulted in no significant differences for Discomfort.

The median Discomfort was 2.33 for the Interactive condition and 2.17 for the

Video condition. However, the Wilcoxon test revealed significant differences for

robot Competence (p< 0.0001). The median Competence value was 3 for the

Interactive condition and 3.83 for the Video condition. Lastly, an additional

paired Wilcoxon signed-rank test indicated significant differences by Condition

in terms of whether the robot navigated according to social norms. The mean

rating was 3 over 7 points for the Interactive condition and 4 over 7 for the

Video condition. These different results provided evidence in support of our

first hypothesis (H1).

Workload. We conducted an additional paired Wilcoxon signed-rank test to eval-

uate potential differences in perceived workload across Conditions. The test

indicated significant differences for perceived mental demand (p< 0.01). The

median rating for mental demand in the Interactive condition was 2 points out

of 7, while the median for the Video condition was 3. No significant differences

were found for the ratings about physical demand. The median rating was 1 –

the lowest possible – for both conditions. Lastly, we found significant differences

for how hard the participants had to work to complete the surveys (p= 0.023).

The median rating for the Interactive condition was 2 out of 7 points, and the

median for the Video condition was 3. These results partially support H2.

We suspect that the different results across conditions were due to the interactive

nature of the simulation, which provided better opportunities for the participants to

evaluate the responsiveness of the robot to their actions and to other virtual humans

than the video. However, further tests are needed to validate this assumption. For

example, future tests could consider human perception of the robot and the perceived

workload in both the real world and the simulated replica. Another aspect to con-

sider is the user perspective. While we used a third-person perspective in SEAN-EP,
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studying interactions perceived from a first-person perspective could better translate

to the real world. An additional consideration for future work is the display type

used by the participants.

6.7 Discussion

Our approach to make interactive simulations available on the web was effective in

general. It allowed users to control their virtual avatars in rich-client simulations

and quickly gather data to study social robot navigation. In the future, we would

like to use SEAN-EP to also allow users to control the robot, so that we can collect

example behaviors for social robot navigation. We also wish to explore other types of

common navigation scenarios [215, 84, 173], e.g. walking alongside a robot or passing

in narrow spaces.

We observed that most survey participants tried to complete the simulated tasks

in a polite and naturalistic manner as directed. There were several people however,

who explored undesired actions for their avatars. About 18% of the participants

pushed the robot in the simulation, and about 12% collided with a human based on

annotations from our video survey. In the future, it is important to explore incentives

for participants to reduce these undesired behaviors.

Lastly, we evaluated our proposed approach using a single robotics simulator.

Given the flexibility of our method, we would like to see it being used to make other

rich-client simulators for Linux easily available on the web. This could facilitate

human feedback collection in other HRI domains.

6.8 Summary

This chapter introduced a flexible method to enable crowd-sourcing of human feed-

back using interactive rich-client simulators deployed on the web. We then demon-
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strated a particular instantiation of this approach, called SEAN-EP, in the context

of social robot navigation.

We tested SEAN-EP with an online survey, which validated its ability to serve

simulations to many users. Furthermore, we compared the results of evaluating

robot navigation through interactive simulations using our method against evalu-

ations based on video surveys. Our proposed interactive methodology resulted in

different perception of the robot and lower mental demand for participants.
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Chapter 7

Methodologies for Collecting Human

Feedback in Human-Robot

Interaction Research∗

Building on the SEAN-EP platform introduced in Chapter 6, we investigate how

different methodologies for collecting human feedback affect perceptions of a robot

during navigation tasks. While SEAN-EP enables efficient collection of subjective

feedback via interactive simulations, it raises important questions about how per-

ceptions gathered via different methodologies compare to those from real-world en-

counters. To address this, we compare the gold standard of in-person studies with

two online approaches, including non-interactive video-based surveys and interactive,

online surveys that utilize SEAN-EP. We conducted a 2x2 between-subjects study

(N=160) examining the effects of both the interaction environment (Real vs. Simu-

lated) and the level of participant interactivity (Interactive vs. Video) on perceptions

of a robot’s competence, discomfort, social presentation, and social information pro-
∗Parts of this chapter were originally published as Nathan Tsoi, Rachel Sterneck, Xuan Zhao,

Marynel Vázquez. (2024). Influence of Simulation and Interactivity on Human Perceptions of a
Robot During Navigation Tasks. In ACM Transactions on Human-Robot Interaction (THRI) [276].
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cessing. Our results revealed a significant difference in the perceptions of the robot

between the real environment and the simulated environment, as well as between pas-

sive observation and active engagement. Notably, simulated interactions and their

corresponding videos elicited higher reported workload than real-world conditions.

These findings suggest that results from video-based and simulation-based method-

ologies may not always translate to real-world human-robot interactions. In order

to allow practitioners to leverage learnings from this study and future researchers to

expand our knowledge in this area, we provide guidelines for weighing the tradeoffs

between different methodologies.

7.1 Introduction

Different methodologies have been proposed to investigate human perceptions of

robots in Human-Robot Interaction. Generally, the gold standard is to collect human

perceptions through real-world, in-person studies [25]. However, in-person studies

may carry with them administrative overhead, e.g., the recruiting of participants

(perhaps through flyers, social media or word-of-mouth) and scheduling. Moreover,

each participant must travel in order to interact with a researcher in a set physical

space. In practice, the need for in-person interaction and the associated adminis-

trative overhead could negatively impact the number of participants in an in-person

study. Inadvertently, this could limit the sample size and statistical power a study

may achieve [110].

An alternative to in-person studies is to record interactions between a human and

a robot in videos and then gather human perceptions of the robot using a web survey

that includes the recordings. Because of the online nature of the survey, participants

can be recruited via online crowdsourcing platforms [123], allowing researchers to scale

data collection and accelerate the pace of research. However, video studies are not
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Figure 7.1: Experimental conditions of our 2× 2 between-subject study. Our independent
variables were the interaction environment (Real vs. Simulated environment) and the level of
interactivity of the research methodology (Interactive participation vs. Video observation).

without limitations. First, video interactions between a human and a robot can lack

diversity compared to in-person studies due to the limited number of scenarios used to

create videos. Second, participants who observe interactions through the recordings

are one step removed from the human-robot interaction. In this case, participants

providing the survey responses are not interacting with the robot but, instead, they

passively view the robot interacting with another person. Information flow between

the robot in the video and the person providing the label is unidirectional, as opposed

to bidirectional, which characterizes interactive encounters with technology [230, 39].

Recently, simulations of human-robot interactions have been used instead of in-

person or video-based studies in HRI [292, 231, 270]. Modern web infrastructure

allows researchers to deploy simulations within online surveys so that online study

participants can virtually interact with a robot in a simulator within their web browser

and then provide their perceptions of social robots [270]. Due to the virtual nature

of this process, simulations have the potential to improve the efficiency and scal-

ability of data collection in HRI while offering a higher level of interactivity than

video-based studies. Prior studies have explored how human perceptions of social

navigation robots may differ between some methodologies, such as between videos

and simulations [270]. Other studies have explored the potential benefits of in-person

vs. virtual interactions [19]. Yet, open questions remain on how human perceptions

of a mobile robot for social navigation might differ between such methodologies.

We conducted a study that utilized two navigation tasks to investigate human
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perceptions of a mobile robot along 4 dimensions (competence, discomfort, social

presentation, and social information processing). As shown in Figure 7.1, the study

considered two independent variables. One variable concerned the level of interactiv-

ity of the research methodology (Interactive participation vs. Video observation). The

second variable was the interaction environment (Real vs. Simulated environment),

because simulations used in HRI do not always fully mimic the visual appearance of

the real world.

Our results suggest that there are subtle tradeoffs that must be considered when

choosing the methodology with which one conducts a study. In particular, our results

revealed that interaction environment and interactivity can influence human percep-

tions of robots in HRI studies. Moreover, the task can also influence perceptions of a

robot’s performance. While simulations and video studies conducted online are prag-

matic for HRI research, our results suggest that user perceptions of robots gathered

with these methodologies may not always translate to perceptions from real-world

human-robot interactions. In order to allow practitioners to leverage learnings from

this study and future researchers to expand our knowledge in this area, we provide

guidelines for weighing the tradeoffs between different methodologies in Section 7.6.

7.2 Related Work

This section discusses related work in regards to the types of research methodologies

considered in our study. First, we discuss video-based evaluations and simulation in

Human-Robot Interaction. Then, we discuss related work on robot embodiment and

physical presence, which are important aspects of in-person studies.
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7.2.1 Video-Based Evaluation in HRI

Video studies have often been used in HRI to collect data on human perceptions

of robots [249, 114], measure human understandability of robot behavior [217, 76],

and gather preferences over robot behavior [312, 147]. Videos have also been used

to portray recordings of human-robot interactions in a way that seems responsive to

human actions [190] and for early robot prototyping [109].

Video recordings of human-robot interactions allow participants to provide feed-

back regarding their perception of a robot without directly interacting with it. Col-

lecting feedback without in-person interaction is useful when it is infeasible to have

a participant interact with the robot due to safety concerns [296] or when there are

restrictions imposed by infectious disease outbreaks [83], which can limit access to

research materials and robots.

While in-person studies require experimenters to find local participants (e.g., using

flyers or word-of-mouth), online video studies can leverage crowdsourcing platforms

(such as Prolific or Amazon Mechanical Turk) to reduce recruitment bottlenecks.

Furthermore, crowdsourcing can enlarge the participant pool beyond a researcher’s

immediate geographic location, allowing for cross-cultural studies (e.g., [69, 124, 167]).

Finally, once a study is posted online, crowdsourcing also allows the scaling of HRI

research by enabling many participants to view videos of interactions and provide

their feedback in parallel. However, because it is impossible to fully control the

environment in which the video-based study is administered in these cases, there

could be biases in the data collection. For example, bias could be introduced due to

the screen size used by participants [281]. Nevertheless, because crowdsourcing has

gained significant popularity in HRI (e.g., [249, 76, 258, 208, 132, 146, 23, 270]), we

also used it in our study about human perceptions of a mobile robot.
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7.2.2 Simulation in HRI

In HRI studies, simulations have been used to investigate interactions between partic-

ipants and robots who engage in a two-way flow of information, which is not present

in videos. Early HRI simulators focused on providing graphical user interfaces for

robot development and testing. For example, USARSim supported human-robot in-

teraction research in the context of robot teleoperation [155]. Chernova et al. created

an online multiplayer game that simulated human-robot interactions for learning in-

teractive robot behavior [61]. Other robotics simulators allowed users to teleoperate

human avatars to enable virtual interactions with robots. For instance, the Modular

OpenRobots Simulation Engine (MORSE) [79] was integrated with human avatars

to allow for virtual experimentation [153]. Also, the Social Environment for Au-

tonomous Navigation 2.0 (SEAN 2.0) [274] integrated the Unity game engine with

the Robot Operating System (ROS) to make it possible to train and evaluate social

robot navigation policies.

A common limitation of simulation is the lack of visual realism. Rich-client sim-

ulations such as MORSE and SEAN 2.0 have partly addressed this limitation, but

they typically require a powerful computer with a dedicated Graphics Processing Unit

(GPU) to render the virtual world. Web technologies, such as SEAN-EP [270], have

been used to increase accessibility to rich-client simulations by allowing a participant

to interact with a robot in a simulated environment using a standard web browser.

We used SEAN-EP in our study so that participants did not need to install simulation

software locally or have a dedicated GPU.

One might naturally assume that more visual realism, via higher-fidelity simu-

lations, is always better than less visual realism. Surprisingly, Truong et al. [265]

found that lower fidelity simulations resulted in better sim-to-real transfer of robot

navigation behavior. This result inspired us to compare human perceptions of a robot

where visual realism can differ based on the interaction environment in which humans
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observe human-robot interactions. In our work, these observations were obtained in

fully realistic environments (showing real-world interactions in a lab), or they were

obtained in a simulation of the lab environment.

Close to our work, Tsoi et al. [270] examined differences in human perceptions of a

Kuri robot in two setups: participants either interacted with the robot in SEAN [268],

or they observed videos of human-robot interactions in the simulation. They found

that, for navigation tasks, a robot viewed in a video was perceived as more competent

than one experienced interactively in SEAN. Additionally, participants in the interac-

tive simulation condition reported less mental demand than participants in the video

condition. However, no comparison was made with respect to real-world interactions,

as in our study.

7.2.3 Physical Robot Embodiment and Presence

One important difference between in-person studies and both video and simulation

methods is robot embodiment and presence. These concepts are related but capture

different aspects of the interaction [182]. Robot embodiment describes the morphol-

ogy and visual characteristics of a robot, which can differ between the real world

and virtual environments. Type of presence describes where a robot is located, and

thereby can influence the medium over which the same robot is experienced (typically

in-person, via teleconference, or in a one-way video). There has been much interest

in how perceptions of robots are influenced by robot embodiment and presence, but

results are inconsistent.

Robot embodiment can influence human perceptions of a robot and human-robot

interactions [285, 85, 157, 67, 73, 291, 241]. Robot embodiment is not a binary

concept, but exists on a spectrum [85] ranging from disembodied agents which com-

municate only over text or speech [67, 291], to agents simulated on a screen using a

2-dimensional interface or avatar [73], to agents modeled in a 3-dimensional simula-
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tion [268, 155, 274], to agents that exist with a physical presence in the real world.

For example, Strait et al. [241] studied the effects of direct versus indirect speech

on humans for an advice-giving robot where relevant factors in the study included

robot appearance and robot presence. In another study, Wainer et al. [285] compared

human perceptions of a co-located physical robot, a remotely located (telepresent)

robot, and a simulated robot that explained and supervised a Towers of Hanoi puz-

zle. The study results suggested that physically embodied co-located interactions are

more enjoyable than interactions with remote-located and simulated robots.

Research suggests that human behavior and human perception of robots can be

influenced by robots’ presence, although results vary in the literature. For example,

Jung and Lee [125] and Lee et al. [150] found that the physical presence of a robot can

influence its perceived social presence; however, Thellman et al. [253] found that the

perceived social presence of a robot was not influenced significantly by its physical

or virtual presence [253]. Other examples are found in Bainbridge et al. [19] and

Salomons et al. [227], who compared physically present robots with a live video stream

of robots on a book-moving task and an exercise task, respectively. These studies

found that people were more likely to fulfill an unusual request by the robot, afforded

greater personal space to it, and made fewer exercise mistakes when it was physically

present. But in social robot navigation, Woods et al. [296] found that perceptions

of a robot approaching people were consistent between video and real-world settings.

Our study further expands this line of work on the effects of presence on human

perceptions of robots.

7.3 Method

Prior work on human perceptions of robots in video, simulation, and in-person studies

has been largely fragmented by the research methodologies. To more comprehensively
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Figure 7.2: Photos of the Real (a and b) and Simulated (c and d) environments. The
Interactivity level manipulated how the participant interacted with each of the environments.
A participant in the Real-Interactive condition (a) wore a chest harness with trackers for
localization and a GoPro camera while interacting with the robot in the real world. A
participant in the Sim-Interactive condition (c) used keyboard controls to control an avatar
through the virtual lab. Participants in the Video conditions watched video recordings of
the interactive participants. During the art task, the robot guided a participant to a poster
and communicated with the participant using text on the real (b) or simulated (d) laptop
screen.

understand how human perceptions vary between these methodologies, we conducted

a 2x2 between-subjects study with a mobile robot in a laboratory setting. The two

independent factors of our study were: Interaction Environment (Real vs. Simulated

environment), and the level of Interactivity of the research methodology (Interactive

participation vs. Video observation). Photos of all experimental conditions are shown

in Figure 7.1. The difference between Real and Simulated interactions is shown in

Figure 7.2. To the best of our knowledge, our study, which utilized two navigation

tasks, is the first to compare human perceptions of robots obtained in real-world

interactions with perceptions obtained from interactive simulations, where humans

control a virtual avatar. We compared these human perceptions of a robot in real-

world interactions and interactive simulations with perceptions of the robot after

viewing a video recording. Our study protocol was approved by our Institutional

Review Board.
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7.3.1 Hypotheses

As shown in Figure 7.1, our two independent variables led to four conditions: Real-

Interactive, Real-Video, Sim-Interactive, and Sim-Video. We studied whether these

conditions had an effect on four aspects of human perceptions of the robot: Compe-

tence [86]; Discomfort [49]; Social Presentation, or “the robot’s ability to appear to

be a desirable social partner” [24]; and Social Information Processing, which cap-

tures social intelligence [24]. We also studied the effect of interactivity on perceived

workload [91]. These measures are common in the Human-Robot Interaction litera-

ture [196, 148, 143, 90, 235].

Our first set of hypotheses focused on the idea that human perceptions of a mo-

bile robot in the Real environment would differ from perceptions of the robot in the

Simulated environment. These hypotheses were motivated by prior work that sug-

gests that people’s perception of a robot can vary between simulation and real-world

interactions (e.g., [286, 159, 270]). In particular, Tsoi et al. [270] provided evidence

that human perceptions of robots collected via video studies and compared to those

collected using interactive, online simulations could differ, but did not compare them

to observations obtained in real-world human-robot interactions. More specifically:

• H1. Human perceptions of the robot’s competence (H1a), discomfort (H1b),

social presentation (H1c), and social information processing (H1d) in the Real

environment will differ from the Simulated environment.

Our second set of hypotheses tested the potential difference in human perception

of a mobile robot between a participant interacting with a robot compared to a

participant viewing an interaction with another person in a video. This hypothesis

is motivated by the common use of videos in HRI studies, and the growing use of

interactive simulations as a potential replacement [292, 231, 270]. Prior work suggests

that people may perceive a robot more positively when physically present [157] and
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that people may be influenced by co-present robots (e.g., [19, 111]).

• H2. Human perceptions of the robot’s competence (H2a), discomfort (H2b),

social presentation (H2c), and social information processing (H2d) will differ

between interactive conditions (Sim-Interactive and Real-Interactive) and video-

based conditions (Sim-Video and Real-Video).

Our third set of hypotheses considered data from the Real-Interactive condition

as the gold standard for gathering human perceptions of robots. Then, because

video observations lack interactivity in comparison to interactive simulations, we sus-

pected that human perceptions collected with the Sim-Video and Real-Video condi-

tions would be less similar to those obtained in the real world than the perceptions

obtained with the Sim-Interactive condition.

• H3. Human perceptions of the robot’s competence (H3a), discomfort (H3b),

social presentation (H3c), and social information processing (H3d) in video-

based conditions (Sim-Video and Real-Video) are more similar to the Sim-

interactive condition than to the Real-Interactive condition.

Our fourth and final hypothesis is motivated by prior work that associates em-

bodied and interactive experiences with low workload. For example, Wang et al. [291]

found that robot agent embodiment resulted in lower perceived workloads during in-

teraction with robotic agents compared to voice-only agents. Tsoi et al. [270] found

partial support for lower perceived workload when completing an HRI survey that

involved providing perceptions of a robot in interactive interactions compared to a

survey that involved providing perceptions based on video observations

• H4. The Interactive conditions will lead to a lower perceived workload by

participants than the Video conditions.
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7.3.2 Participants

In total, we recruited 213 participants for our study. For the Real-Interactive condi-

tion, participants were recruited via flyers and word of mouth. Participants for all

other conditions were recruited online using the Prolific crowdsourcing platform.

All the participants were at least 18 years old, had normal or corrected-to-normal

vision, and were fluent in English. The participants in the Real-Interactive condition

were required to be able to walk comfortably and stand for the duration of the study

(20-30 minutes). Participants in the online portion of the study were limited to those

on non-mobile devices, such as laptops and desktop computers to ensure a reasonable

screen size on their device and the ability to control the virtual avatar in simulation

using a physical keyboard.

We excluded 53 participants from analyses because 35 participants in an Interac-

tive condition had incomplete video recordings due to technical issues or had incom-

plete surveys, 14 participants had other technical issues or did not follow directions,

and 4 accidentally participated in the Sim-Video condition after participating in the

Sim-Interactive condition.

Among the final 160 participants (40 per condition), 90 participants identified as

male, 66 as female, 2 as non-binary, 1 as genderqueer, and 1 declined to state their

gender. Additionally, 32 participants were between ages 25-34, 50 were between ages

35-44, 40 were between ages 45-54, 23 were between ages 55-64, 13 were between

ages 65-74, and 2 were between ages 75-84. On average, the participants indicated

neutral familiarity with robots on a 7-point scale (M = 3.91,SE = 0.13). The online

participants had an average Internet speed of 163.46 Mbps (SE = 15.86), which was

in line with prior use of SEAN-EP [270].
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7.3.3 Setup

For the Real-Interactive condition, the experiment was conducted in a laboratory

room on a university campus in the United States. The room contained physical

obstacles consisting of EverBlock construction blocks, as shown in Figures 7.1(a) and

7.2(a). There were also four distinct pieces of artwork on easel stands positioned in

the corners of the room. A close-up photo of one of the pieces of artwork in the real

laboratory environment is shown in Figure 7.2(b).

We designed our study such that a robot, controlled by the ROS Navigation Stack

with Social Cost Layers [162], autonomously navigated near the participant to jointly

complete two tasks: the Follow Task and the Art Task. The Follow Task was designed

to place the participant’s focus on the robot throughout the interaction. Follow tasks

are typical for robots that serve as tour guides and have been investigated in the past

in social navigation [43, 191, 222, 186]. Meanwhile, we designed the Art Task to allow

participants to observe the robot’s movement during a more dynamic and complex

navigation task. These tasks are further described in the next section. Importantly,

the robot that we used in the study was a Pioneer 3-DX on which we affixed a laptop,

oriented with the screen pointing forward, to allow for robot communication with the

participant. We also attached a depth sensor and localization beacon to the robot.

The participants in the Real-Interactive condition wore a GoPro camera on their

chest (as in Figure 7.2(a)) to record videos from a first-person perspective while

completing study activities. HTC Vive Trackers were used to localize the robot and

the participants. Also, the participants used a custom web application on a mobile

phone, which we provided, to do task-specific actions. This included pressing a button

on the phone to begin each task and recording their answers to survey questions. The

web application was also used to display text on the robot’s laptop.

For the Sim-Interactive condition, we modeled the laboratory room used for the

Real-Interactive condition as well as the Pioneer robot using the Unity game engine
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and SEAN 2.0 [274]. Figures 7.1(b), 7.1(d), 7.2(c), and 7.2(d) illustrate the virtual

world that we created for the study. In addition, we used SEAN-EP [270] to embed

our simulation in a Qualtrics web survey, which gathered participants’ demographics

data and all other relevant measures regarding their experience of virtual human-

robot interactions. The participants used their keyboards to control a virtual avatar

in the SEAN simulations and to complete the same activities as in the Real-Interactive

condition.

For the Real-Video and Sim-Video conditions, we used recordings of participants’

interactions with the robot in the real-world lab and the virtual re-creation, respec-

tively. A GoPro camera worn by participants in the Real-Interactive condition (as in

Figure 7.2(a)) was used to record the interactions that were observed by participants

in the Real-Video condition. For the Sim-Video condition, we used SEAN 2.0 to

save video recordings of the human-robot interactions that happened under the Sim-

Interactive condition. The recordings were made from the perspective of the virtual

avatar that was controlled by a human in SEAN. In order to ensure participants in

the Video condition were able to understand what the robot was communicating, we

added captions to all videos which displayed the same text that was shown on the

robot’s laptop screen. We did not use audio in the simulation or the videos due to

the difficulity of generating realistic audio. An example of the captions is provided in

Figures 7.1(c) and 7.1(d). The videos were then embedded in a Qualtrics survey like

the one used for the Real-Interactive condition.

7.3.4 Procedure

At the beginning of the study, the participant provided demographic information (as

in Section 7.3.2). Then, the participant continued on to complete the study’s four

phases: 1) Introduction, 2) Follow Task, 3) Art Task, and 4) Closing. In each task,

the participant was specifically asked to pay attention to how the robot moved.
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Phase 1: Introduction. In the Real-Interactive condition, the participant was in-

troduced to the robot by an experimenter who told them that they would in-

teract with the robot through a series of tasks. Then, the experimenter assisted

the person as they put on the GoPro chest harness to record their activities

during the study. In the Sim-Interactive condition, the participant completed

a walk-through tutorial that showed them the virtual Pioneer robot and their

randomly assigned avatar. The walk-through then explained how to navigate

the simulated lab. In the Real-Video and Sim-Video conditions, the participant

was given text instructions indicating that they would watch videos of a person

or avatar interacting with a robot. The participant was also shown an image of

the robot to familiarize the person with the Pioneer 3-DX platform.

Phase 2: Follow Task. In the Real-Interactive condition, the participant was in-

structed to move to a specific marker on the floor and then press a button on

the mobile device to begin the follow task. Then, the participant followed the

robot along a pre-defined path, which was composed of four segments.

The path involved navigating around EverBlock construction blocks placed

throughout the room, as shown in Figures 7.2(a) and 7.2(c).

After following the robot along each of the four path segments, the participant

answered survey questions about their impression of the robot. In the Sim-

Interactive condition, the participant completed the same task but in a SEAN

simulation.

For the Real-Video and Sim-Video conditions, we paired each participant with a

study session that involved Real-Interactive and Sim-Interactive participation,

respectively. Then, the videos of the Follow Task from the Interactive sessions

were shown to the participants in the Video conditions. In this manner, a par-

ticipant in Real-Video and Sim-Video conditions was able to watch recordings
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of the task and answer survey questions about their impression of the robot in

the videos, as in the Interactive conditions.

Phase 3: Art Task. In the Real-Interactive condition, the participant was told that

there had been an art heist in the lab and some of the art had been replaced with

fakes. The participant and the robot were tasked with collecting information

about the four art pieces in the laboratory to help the experimenters figure out

which were real and which were fake. Figure 7.2(b) displays one of the art pieces

in the real world, and Figure 7.2(d) shows it in simulation. For each of the four

art pieces, a participant performed the following steps:

1. The participant was directed to find the robot.

2. Once the person found the robot, a text message was displayed on the

robot’s computer screen which instructed them to follow it.

3. The robot then led the participant to a piece of artwork.

4. The participant was instructed via text on the robot’s computer screen to

count the number of a given object shown in the art piece.

5. After instructing, the robot moved away to a different location and waited

for the participant to complete the object counting.

6. The participant provided their answer to the counting request using the

mobile device and was directed to find the robot again to repeat the process

for the next art piece.

The Art Task was designed so that the person and the robot would engage

in more dynamic interactions than in the Follow Task. In this case, while

the person was counting objects in an art piece, the robot moved far from the

participant and waited until they completed counting the objects in the picture.

Only when the participant started moving away from the picture did the robot
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start to move back towards the person. Then, both the robot and participant

moved towards each other and soon thereafter engaged in face-to-face or side-

by-side spatial formations (e.g., as in [117, 304]).

In the Real-Video and Sim conditions, the description of the Art Task was

provided in text before the participant began the task.

Also, in the Sim-Interactive condition, the participant used an interface which

we implemented in the simulation to record their responses to the counting re-

quest by the robot. Meanwhile, in the Video conditions, the participant recorded

their answers using the Qualtrics web survey. This survey included videos from

Interactive conditions using the same participant-session pairing explained for

the Follow Task.

Phase 4: Closing. Finally, the participant provided their impressions of their per-

ceived workload for the tasks in the study.

In-person participants in the Real-Interactive condition were paid $15.00 USD per

hour, rounded to the nearest 10-minute increment.

Participants in all other conditions completed the study online using Prolific. They

were paid $5.00 USD as we estimated the online study sessions to take 20 minutes.

7.3.5 Dependent Measures

We measured 2 aspects of participants’ experience during our study using widely

adopted survey measures in HRI:

Human Perceptions of the Robot. We measured four aspects of human percep-

tions of the robot: 1) Competence, 2) Discomfort, 3) Social Presentation, and

4) Social Information Processing. The first two aspects were measured using

the Robot Social Attributes Scale (RoSAS) [49], which includes robot Compe-

tence and Discomfort factors. The items were answered in relation to how the
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robot moved during the tasks. Ratings for the Competence and Discomfort

scales were gathered using a 7-point responding format ranging from 1 (Defi-

nitely Not Associated) with the robot to 7 (Definitely Associated), which was

the same as the original RoSAS responding format.

Robot Social Presentation and Social Information Processing were measured

using the short-form of the Perceived Social Intelligence (PSI) questionnaire

[24]. The Social Presentation scale had a total of 7 items, all of which began

with “This robot...” and ended with statements such as “enjoys meeting people,”

and “cares about others.” The Social Information Processing scale had a total

of 13 items, which started with “This robot...” and ended with statements

like “responds appropriately to human emotion” or “can figure out what people

think.”. Ratings for PSI statements were gathered on a 5-point responding

format ranging from 1 (Strongly Disagree) to 5 (Strongly Agree), which was

the same as the original PSI responding format.

For each scale, we aggregated responses across items to calculate a composite

measure after confirming high internal reliability. The Cronbach’s α values were

0.90 for Competence, 0.76 for Discomfort, 0.76 for Social Presentation, and 0.94

for Social Information Processing. The Cronbach’s α value for each aspect we

measured was within the 0.7 to 0.95 acceptable value range [252].

Perceived Workload. We used items from the NASA Task Load Index (TLX) [91]

to assess the perceived workload for the Follow and Art Tasks. Perceptions of

Mental Demand, Physical Demand, Temporal Demand, Effort, and Frustration

were gathered on a 7-point responding format from 1 (lowest) to 7 (highest).

The 7-point responding format was used for consistency in the responding for-

mat with the other scales. The 7-point format was chosen over the 5-point

format because responding formats with 6 or more categories have been shown
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to correlate better[211]. Example survey items included “How mentally de-

manding were the tasks?” (Mental Demand) and “How insecure, discouraged,

irritated, stressed, and annoyed were you?” (Frustration). The Cronbach’s α

for the NASA TLX survey items was 0.75, which is within the 0.7 to 0.95 range

of acceptable values [252].

7.3.6 Analysis

We analyzed the results by task (Follow and Art) in two ways. First, we fit-

ted linear mixed-effect models for all dependent measures with fixed effects

for Interaction Environment (Real or Simulation) and Interactivity (Interac-

tive participation or Video observation). We also assigned a unique identifier,

Session ID, to each Interactive study session, which was added as a random

effect in our linear model. A linear mixed-effect model was used due to the

hierarchical nature of the data, i.e., Participant ID was nested within Session

ID. This allowed us to associate the experience in the Interactive conditions,

from which we made videos of human-robot interactions, with the corresponding

data in the Video conditions. Unless otherwise noted, we used the Restricted

Maximum Likelihood (REML) method for model estimation [199]. A linear

mixed model was used for model estimation instead of ANOVA because of the

nested nature of the data, i.e., Participant ID was nested within Session ID.

Nesting was necessary because the video-condition stimuli were generated from

a recording of the Interactive condition, which resulted in the interactive data

and corresponding video recordings being paired. Note that within the paired

data, the participant who interacted with the robot (either in the Real envi-

ronment or simulation) was not the same as the participant who watched the

video, so a unique Participant ID was used to identify all participants. Second,

because H3 considered the Real-Interactive condition as the methodology that
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Figure 7.3: Contrast results for RoSAS Competence (a,b), RoSAS Discomfort (c,d), PSI
Social Presentation (e,f), and PSI Social Information Processing (g,h) by task. Box plots
span the first to third quartile, a dark grey horizontal line through the box indicates the
median, and a white circle indicates the mean. Box plot whiskers extend to ±1.5 times
the Interquartile Range. The ∼ indicates p < 0.10, * indicates p < 0.05, and ** indicates
p < 0.001.

provides gold-standard results, we performed treatment contrasts between the

Real-Interactive condition and all other conditions.

7.4 Results

7.4.1 Perceptions of the Robot

Competence

The linear mixed model analysis per task revealed significant effects. In particular,

for the Follow Task, we found Interaction Environment to have a significant effect on

Competence, F (1, 156) = 4.30, p = 0.04. The effect size, as measured by Cohen’s d,

was d = 0.16, indicating a very small effect. A post-hoc t-test showed that people

perceived the robot to be significantly more competent in the Real condition (M =
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4.85,SE = 0.06) than in the Simulated condition (M = 4.55,SE = 0.07). The linear

mixed model analysis on the Art Task showed that only Interactivity had a significant

effect on Competence, F (1, 156) = 5.39, p = 0.022. The effect size, as measured by

Cohen’s d, was d = 0.18, indicating a very small effect. A post-hoc t-test indicated

that competence ratings were significantly higher for Interactive participation (M =

5.56,SE = 0.11) than for Video observation (M = 5.20,SE = 0.11).

Comparing the Real-Interactive condition as the baseline condition against three

other conditions with treatment contrasts revealed that the Real-Video condition sig-

nificantly differed from the Real-Interactive condition in the Follow Task, F (1, 156) =

3.94, p= 0.05. The effect size, as measured by Cohen’s d, was d = 0.22, indicat-

ing a small effect. Specifically, compared to interacting with the robot in the real

world (M = 4.65,SE = 0.09), participants watching videos of the robot interacting

with someone else in the real world perceived the robot to be even more competent

(M = 5.05,SE = 0.08). For the Art Task, only the Sim-Video condition was signifi-

cantly different from the Real-Interactive condition, F (1, 156) = 4.79, p = 0.03. The

effect size, as measured by Cohen’s d, was d = 0.24, indicating a small effect. This

suggests that compared to watching a video of a person interacting with the robot

in simulation (M = 5.11,SE = 0.16), participants who interacted with the robot in

the real world viewed it to be even more competent (M = 5.59,SE = 0.14). These

results are shown in Figures 7.3(a) and 7.3(b).

Discomfort

The linear mixed model analyses on both tasks resulted in no significant main effects

on discomfort.

The contrast analyses for the Discomfort responses in the Follow and Art Tasks

led to no significant differences. However, the discomfort ratings in the Sim-Video

condition were marginally different from the Real-Interactive ratings in the Follow
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Task, F (1, 156) = 3.57, p = 0.06. The effect size, as measured by Cohen’s d, was

d = 0.21, indicating a small effect. This indicates that compared to watching a video

of a simulation (M = 2.47,SE = 0.08), participants who interact with a robot in

the real world may view the robot as less discomforting (M = 2.17,SE = 0.07).

Additionally, discomfort in the Real-Video condition was marginally different from

the Real-Interactive condition in the Art Task, F (1, 156) = 3.48, p = 0.06. The

effect size, as measured by Cohen’s d, was d = 0.21, indicating a small effect. This

indicates that compared to interacting with a robot in the real world (M = 2.06,SE =

0.13), participants who watch a video of the real-world robot interacting with another

participant may view the robot as less discomforting (M = 1.71,SE = 0.13). These

results are shown in Figures 7.3(c) and 7.3(d).

Social Presentation

The linear mixed model analyses and the treatment contrasts per task showed no

significant effects on Social Presentation ratings. In general, most ratings were neutral

in the Follow Task and slightly positive in the Art Task, as shown in Figures 7.3(e)

and 7.3(f). The slight increase in Social Presentation perceptions for the Art Task

was expected because the task involved more complex interactions than the Follow

Task, as indicated in Section 7.3.4.

Social Information Processing

The linear mixed model analysis on Social Information Processing for the Follow

Task revealed a significant main effect of Interaction Environment on the ratings,

F (1, 157) = 6.71, p = 0.01. The effect size, as measured by Cohen’s d, was d =

0.41, indicating a small effect. A post-hoc t-test indicated that people perceived

the robot as better able to process social information in the Simulated condition

(M = 2.56,SE = 0.09) than in the Real condition (M = 2.23,SE = 0.09). The linear
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mixed model analysis for the Art Task also indicated that Interaction Environment

had a significant effect on Social Information Processing, F (1, 157) = 5.02, p = 0.03.

The effect size, as measured by Cohen’s d, was d = 0.35, indicating a small effect.

The post-hoc test indicated that ratings were higher for the Simulated environment

(M = 2.79,SE = 0.10) than for the Real environment (M = 2.47,SE = 0.09).

The contrast analyses on the Follow task indicated a significant difference in So-

cial Information Processing ratings between the Sim-Interactive and Real-Interactive

conditions, F (1, 156) = 7.29, p = 0.008, as well as between the Sim-Video and Real-

Interactive conditions, F (1, 156) = 5.31, p = 0.02. The effect sizes, as measured by

Cohen’s d, were d = 0.60 and d = 0.52, respectively, indicating a medium effect

for both contrasts. This suggests that compared to interacting with the robot in

the real world (M = 2.11,SE = 0.12), participants viewed the robot as more ca-

pable of processing social information when interacting with it in simulation (M =

2.60,SE = 0.15) and when viewing it in a video in simulation (M = 2.53,SE = 0.11).

These results are shown in Figure 7.3(g). For the Art Task, the contrast analyses

showed no significant differences on Social Information Processing with respect to

Real-Interactive. The results for the Art Task are shown in Figure 7.3(h).

7.4.2 Perceived Workload

We analyzed the perceived workload with linear mixed model analyses that included

Interaction Environment (Real or Simulation), Interactivity (Interactive participation

or Video observation) and their interaction as main effects. Also, we added Session

ID as a random effect. In the case of workload, we did not perform contrast analyses

as in Section 7.4.1 because H4 did not consider the Real-Interactive condition as a

specific baseline for comparison.

The average ratings for Physical Demand and Temporal Demand were 1.48(SE =

0.07) and 1.76(SE = 0.08), respectively. We found no significant effects on these
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Figure 7.4: Perceptions of Mental Demand, Effort, and Frustration by condition: Real-
Interactive, Real-Video, Sim-Interactive, and Sim-Video. Box plots span the first to third
quartile, a dark grey horizontal line through the box indicates the median, and a white circle
indicates the mean. Box plot whiskers extend to ±1.5 times the Interquartile Range. The *
symbol indicates p < 0.05.

measures.

Interaction Environment had a significant effect on Mental Demand (F (1, 156) =

8.60, p= 0.004), Effort (F (1, 156) = 6.94, p= 0.009) and Frustration (F (1, 156) =

5.77, p = 0.017). The effect sizes, as measured by Cohen’s d, were Mental Demand

d = 0.46, Effort d = 0.42, and Frustration d = 0.38, indicating small effects. The

post-hoc t-test on Mental Demand indicated that participants provided higher ratings

in the Simulated environment (M = 3.15,SE = 0.16) than in the Real environment

(M = 2.45,SE = 0.18). The distribution of Mental Demand ratings is shown in Fig-

ure 7.4(a). Likewise, in the case of Effort, the post-hoc test showed that the ratings

in the Simulated environment (M = 3.18,SE = 0.18) were significantly higher than

those in the Real environment (M = 2.51,SE = 0.19), as shown in Figure 7.4(b).

Finally, the post-hoc test for Frustration revealed that participants felt more “inse-

cure, discouraged, irritated, stressed and annoyed” with the Simulated environment

(M = 2.21,SE = 0.17) than with the Real environment (M = 1.68,SE = 0.15).

Figure 7.4(c) shows the distribution of results for Frustration.

Interactivity had no significant effect on Mental Demand or Frustration; however,

we found an interaction effect between Interaction Environment and Interactivity

on Effort, F (1, 156) = 12.45, p < 0.001, R2
Adjusted = 0.10. A post-hoc Tukey HSD

test indicated that the Effort for the Real-Interactive condition (M = 1.98,SE =
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0.17) was significantly lower than for Real-Video (M = 3.05,SE = 0.32) and Sim-

Interactive (M = 3.53,SE = 0.26).

7.5 Discussion

In our first set of hypotheses, our results indicated some support. Results showed

a significant difference between perceptions of the robot in simulation compared to

the real environment. In particular, we found higher Competence ratings (H1a) for

the robot in the real laboratory environment than in simulation, although the effect

was small. We suspect the difference was due to the greater level of visual realism

exhibited by the real robot [286]. Also, we found that the real robot was perceived

as less capable of processing social information than the simulated robot (H1d). So-

cial information processing (SIP) refers to the robot’s ability to perceive the social

behaviors, emotional states (including desires), and cognitions (including beliefs) of

nearby people [24]. The effect for SIP was larger than the effect for Competence, but

still small. It could be that human perceptions about the robot’s social information

processing abilities were influenced by their virtual avatar in the simulations, which

behaved in a much simpler way than people could in the real laboratory environment

and looked less realistic as well.

We found evidence for some of our second set of hypotheses, which posited that

human perceptions of the robot will differ between Interactive participation and Video

observations. In particular, for the Art Task, participants viewed the robot as more

competent with Interactive participation than when human-robot interactions were

observed in Videos. Although the effect size was small, our results were surprising

because they did not align with the results by Tsoi et al. [270], who compared human

perceptions of the competence (H2a) of a Kuri robot in interactive SEAN simulations

and in videos of the simulation. Beyond the fact that Tsoi et al. [270] did not consider
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real-world interactions, we believe that the inconsistency in findings could be due to

three reasons: 1) the laboratory environment used in our work had more obstacles

and fewer people than the one used in [270]; 2) we used a Pioneer robot which

could set different initial human expectations than the Kuri robot used in [270]; and

3) the Art Task was more complex than the Follow Task, and [270] only studied

situations where participants followed the robot. Future work should investigate

which factors specifically affect human perceptions of the competence of a robot

between HRI studies involving Interactive participation and Video observation.

As to our third set of hypotheses, we obtained some evidence that human percep-

tions of the robot in the Video conditions are more dissimilar to the Real-Interactive

condition than those in the Sim-Interactive condition. For example, contrast anal-

yses indicated that robot competence (H3a) was significantly different between the

Real-Interactive condition and the Real-Video conditions (for the Follow Task) and

between the Real-Interactive and Sim-Video conditions (for the Art Task). No sig-

nificant differences were found for competence between Real-Interactive and Sim-

Interactive conditions. In terms of discomfort (H3b), we found trends that suggested

similar differences but for the opposite task – compare Figures 7.3(a) with 7.3(c), and

Figures 7.3(b) with 7.3(d). Again, no significant differences were found for discom-

fort between Real-Interactive and Sim-Interactive. However, for social information

processing (H3d), Real-Interactive led to significantly different results than both Sim-

Video and Sim-Interactive. This last result was unexpected and not in line with our

hypothesis. Overall, the main takeaway from these results is that perceptions of

robots gathered through video observation and interactive simulation studies may

not always translate to real-world interactions.

Finally, we found only a small amount of evidence in support of our last hypothesis,

which stated that cognitive load would be lower for Interactive participation than

Video observations. More specifically, only perceived effort was significantly lower
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for the Real-Interactive condition than for the Real-Video condition. Interestingly,

most of our results in regard to workload were instead about differences between the

Real and Simulated environments, including differences for mental demand, effort,

and frustration. We thought that this result could be due to the fidelity of our SEAN

2.0 simulations. Although SEAN 2.0 generates the renderings through Unity and

there is potential to make these simulations photo-realistic, our virtual laboratory

environment looked much simpler than the real-world lab (as can be seen in Figure

7.1 and Figure 7.2). For example, while humans are adept at identifying coherent

concepts from the visual clutter typically found in the real world [195], increased

participant effort may be necessary to interpret and interact with the robot in the

simulation environment, which contains a distribution of visual clutter different from

the real world. In the future, exploring how environmental clutter affects human

perceptions of robots in HRI could be an interesting avenue of research, for example,

by comparing with experiments in simulation that incorporate real-world clutter [298].

Another factor to consider is the usability and computing experience of the different

systems implemented for each condition, which may have also had an impact on

participant workload. Overall, this is a first step towards a better understanding of

how different methodologies can influence the perceptions of mobile robots for social

navigation. We hope future HRI studies can explore this direction on a larger scale.

7.5.1 Limitations

First, we conducted our study with only one simulation environment (SEAN 2.0 [270]).

It would be interesting to verify in the future if our results hold with other types of

simulators, e.g., built using other game engines like Unreal [166] or with lower-fidelity

like Gazebo [209]. Second, as with all simulations, our simulated environment and the

videos thereof were not perfect replicas of the real world. In the future, it would be

interesting to investigate the impact of factors such as the lack of audio in simulation,
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which could have influenced perceptions of the robot in the Sim and Video conditions,

the size and the resolution of the display or Head Mounted Display, and properties

of the randomly assigned virtual avatars, such as gender, which may not match that

of the participant. Third, we focused on investigating people’s perceptions of robots

using subjective responses to well-established questionnaires. However, future re-

search could benefit from including behavioral outcomes, like proxemics measures

[101], when comparing research methodologies for social robot navigation. When

evaluating results for other tasks, perhaps other behavioral measures like teamwork

efficiency [20], could be used instead. Lastly, it would be interesting to investigate

to what extent the crowdsourcing setup that we used to gather data in three exper-

imental conditions affected our results. In particular, one could imagine replicating

our study in the future with 100% in-person participants, such that no participant

is subject to the distractions and technical challenges that often arise with remote

participation through crowdsourcing [281].

7.6 Guidelines for Methodology Selection

The choice of methodology is one of the many considerations that a researcher must

evaluate when approaching new experimental questions in HRI. The primary consid-

erations are time and cost. Ideally, minimal time is required to set up and complete

the study while minimizing the cost. Although in-person user studies are the gold

standard, often video studies are used. Video studies can allow crowd-sourcing of user

feedback, which scales quickly, but the quality of responses can vary if participants

are not engaged with or focused on the video. With recent technological advance-

ments, interactive simulations can now scale with the use of crowd sourcing [270],

they can encourage a participant to remain engaged with the task or detect if the

person is not engaged. Other considerations include the availability of a real robot,
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the safety of the task experienced via different methodologies, and the quality of the

simulation along the dimensions of importance. Perhaps in the future, we may have

widely available, photo-realistic, real-time, interactive simulations that will decrease

the gap between methodologies. However, until this is the case, researchers should

carefully consider the tradeoffs.

7.7 Summary

We investigated how people perceived the competence, discomfort, social presenta-

tion, and social information processing of a mobile robot during two navigation tasks.

Our study compared methodologies with different Interaction Environments (Real vs.

Simulated) and Interactivity (Interactive participation vs. Video observations). We

found significant differences in human perceptions of a mobile robot when an inter-

action was experienced in the real world compared to simulation. In addition, we

found significant differences in human perceptions when participants watched a video

of a human-robot interaction compared to when they participated in the interaction,

experiencing a two-way flow of information.

Overall, our study suggests that results from user studies that rely on video ob-

servations and interactive simulations may not always mirror human perceptions of

robots in real-world HRI. Importantly, we found trade-offs between Real-Video, Sim-

Video, and Sim-Interactive methodologies. First, our work provides initial evidence

that suggests that human perceptions of a robot in video studies may be less similar

to real-world in-person studies in comparison to interactive simulation studies. This

suggests that an interactive simulation should be preferred over observing videos. Sec-

ond, we found that participants perceived greater workload in simulated environments

than in real-world environments. Lesser workload in the real-world may help explain

why, in some prior work, humans preferred in-person human-robot interactions more
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than simulated or video interactions [285, 19]. Also, our results with respect to work-

load suggest that Real-Video may be preferred over Sim-Video and Sim-Interactive.

Ultimately, it is important to consider whether human perceptions are likely to trans-

late to the real world, and human workload when choosing a methodology other than

in-person studies to investigate human-robot interactions.

109



Chapter 8

Beyond Collecting Human Feedback:

Predicting Human Perceptions of

Social Robot Performance∗

In the previous chapters, we explored scalable methods for collecting human feedback

on a mobile robot’s competence, social appropriateness, and overall performance,

highlighting the benefits of interactive, scalable simulations. This chapter takes the

next step: instead of asking people for feedback, we ask if machine learning meth-

ods can be used to infer how a robot is being perceived by a nearby human. To

explore this question, we introduce the SEAN TOGETHER Dataset, which consists

of human-robot interactions in VR. The dataset also includes behavioral cues such

as pedestrian motion, eye gaze, and facial expressions. The dataset is labeled with

human feedback supplied as 5-point ratings of perceived robot performance along 3

dimensions: competence, surprise, and intention. By learning to predict people’s per-

ceptions from these signals, this chapter aims to enable socially aware robots to detect
∗Parts of this chapter were originally published as Qiping Zhang∗, Nathan Tsoi∗, Mofeed Nagib,

Booyeon Choi, Jie Tan, Hao-Tien Lewis Chiang, Marynel Vázquez. (2024). Predicting Human
Perceptions of Robot Performance During Navigation Tasks. In ACM Transactions on Human-
Robot Interaction (THRI) [309]. ∗ indicates equal contribution.
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when interactions go wrong so that in the future, they can adapt their behavior to

better align with human expectations and values. Our demonstration on real-world

data shows that the models trained with VR data can generalize to real-world data,

confirming the potential usefulness of our approach in real-world settings.

8.1 Introduction

As a scalable alternative to measuring subjective perceptions of robot performance

through surveys, recent work in Human-Robot Interaction (HRI) has explored using

implicit human feedback to predict these perceptions [14, 71, 239, 307]. These are

communicative signals that are unintentionally exhibited by people [139]. They can

be reflected in human actions that change the world’s physical state [226] or can be

nonverbal cues, such as facial expressions [71, 239] and gaze [181, 14], displayed during

social interactions. Implicit feedback serves as a burden-free information channel that

sometimes persists even when people don’t intend to communicate [135].

We expand the existing line of research on predicting perceptions of robot perfor-

mance from nonverbal human behavior to dynamic scenarios involving robot naviga-

tion. Prior work has often considered stationary tasks, like physical assembly at a desk

[240] or robot photography [307], in laboratory environments. We instead explore the

potential of using observations of the body motion, gaze, and facial expressions of

a person to predict their perceptions of a robot’s performance while a robot guides

them to a destination in a crowded environment. These perceptions correspond to

subjective opinions of how well a robot is performing the navigation task. Predicting

them in crowded navigation scenarios is more challenging than in stationary settings

because human nonverbal behavior can be a result of not only robot behavior, but

also other interactants in the environment. Further, because of motion, nonverbal

responses to the robot may change as a function of the environment. For example,
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Figure 8.1: Data collection. Humans controlled an avatar in the simulation with VR (a)
while they were guided by a Fetch robot (b). The screen on the desk shows what the user
saw.

imagine that the person that follows the robot looks downwards. This could reflect

paying attention to the robot, or be a result of the person inspecting their nearby

physical space, which varies during navigation.

To study implicit feedback during navigation tasks, we performed a systematic

data collection using the Social Environment for Autonomous Navigation (SEAN)

2.0 [273] with Virtual Reality (VR) [308].∗ Humans took part in the simulations

through an avatar, which was controlled using a VR headset, as in Fig. 8.1. The

headset enabled immersion and allowed us to capture implicit feedback features like

gaze. Also, it facilitated querying the human about the robot’s performance as nav-

igation tasks took place. We considered robot performance as a multi-dimensional

construct, similar to [307], because humans may care about many aspects of a robot’s

navigation behavior, as discussed in the social robot navigation literature [90, 176, 87].

Then, we studied fundamental questions about the value of implicit feedback sig-

nals in predicting subjective perceptions of robot performance using the VR data.

First, we investigated to what extent humans can predict a person’s perceptions of

the robot’s performance (along the dimensions of perceived navigation competence,

surprising behavior, and clear intention during navigation). Predictions were made

based on visualizations of observations of the human-robot interaction, as recorded
∗Dataset and source code available at: https://sean-together.interactive-machines.com/.
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in our VR navigation dataset. Second, we investigated how well various supervised

learning models do this type of inference in comparison to humans. Third, we stud-

ied the generalization capabilities of supervised learning methods to users unseen at

training time.

Our analyses bring understanding to the complexity of predicting humans’ per-

ceptions of robot performance in navigation tasks and enabled us to finally conduct

a real-world demonstration in which a robot uses a machine learning model to pre-

dict how a human perceives it in a university campus. We conclude this paper by

discussing the implications of our results for implementing autonomous systems that

infer human perceptions of robot performance using implicit feedback in real-world

navigation scenarios. We hope that our recommendations facilitate future efforts to

make robots more aware of their failures during navigation [257], as well as facilitate

aligning robot behavior to human preferences based on implicit feedback [177, 71, 62].

8.2 Related Work

This section discusses prior work in relation to our contributions. First, we discuss

human perceptions of robot performance, especially in regard to robot motion. Then,

we distinguish between explicit and implicit human feedback, the latter being the

focus of our work. Finally, we briefly review data collection methodologies in HRI.

8.2.1 Perceptions of Robot Performance

Understanding human perceptions of robot performance is important. The percep-

tions can be used to evaluate robot policies [251, 161, 206] and to create better robot

behavior [254, 181, 70, 31], increasing the likelihood of robot adoption. In this work,

we focus on inferring three robot performance dimensions relevant to navigation [90]:
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competence, surprising behavior, and clear intent. Robot competence is a popular

performance metric in robotics [48], especially in robot navigation [175, 271, 12]. In

our work, competent robot navigation behavior corresponds to effectively guiding a

human to a destination. Surprising behavior violates expectations, which is often

considered undesired [16, 87] and may require explanations by the robot [40]. Mean-

while, clear intentions means the robot enables an observer to infer the goal of its

motion [76]. Prior work suggests that if humans fail to anticipate the motion of a

robot because it acts surprisingly or its intent is unclear, they will likely have trouble

coordinating their own behavior with it [229, 77]. There are other perceptions about

a robot beyond robot competence, surprising behavior, and clear intent that one may

want to model in Human-Robot Interaction, like human perceptions of discomfort

with a robot [48, 137] or perceived safety [223, 6]; however, this is out of the scope of

the present work.

8.2.2 Implicit Human Feedback

We distinguish between explicit and implicit human feedback about robot perfor-

mance. Explicit feedback corresponds to purposeful or deliberate information con-

veyed by humans to robots, e.g., through preferences [36, 243] or survey instruments

[17, 175]. Meanwhile, implicit feedback are cues and signals that people exhibit with-

out intending to communicate some specific information about robot performance,

yet they can be used to infer such perceptions. Inferring performance from implicit

feedback can reduce the chances of excessively querying users for explicit feedback

in robot learning scenarios [219, 97], thereby minimizing the risk of feedback fa-

tigue [160]. Learning from implicit feedback is not without challenges, however, as it

can be difficult to interpret [71, 239]. For example, this can happen due to inter-person

variability in facial expressions [100], similar signals being produced for different rea-

sons [46], or signals changing over time as interactions progress [47].
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Figure 8.2: a) It is typical to gather explicit human feedback about robot performance
using surveys after human-robot interactions conclude because interruptions by the exper-
imenters can easily bias human-robot social encounters. Unfortunately, the feedback from
surveys tends to be very limited, making it difficult to understand robot performance at a
granular level. Alternatively, participants may complete video annotations of their experi-
ences [308], but this can be time-consuming and taxing, especially in continuous navigation
tasks. b) In this work, we first collect a dataset of human perceptions of a robot’s per-
formance by prompting participants during interactions using VR (Training Step in the
diagram). Then, we use this explicit feedback to train models that infer human perceptions
of robot performance based on observations of the interactions, especially including obser-
vations of human implicit feedback. The value of such a model is that once it is trained, it
can be reused to estimate robot performance during new interactions (Deployment Step),
without having to ask humans for explicit feedback as in the training step.

Our work considers a variety of nonverbal implicit signals, including gaze, body

motion, and facial expressions, which have long been studied in social signal processing

[282]. While in some cases these signals are treated as explicit feedback (e.g., to

interrupt an agent [302]), we consider them implicit feedback because we do not

prime humans to react in specific ways to a robot. As such, our work is closer to

[71, 284, 177, 238, 46], which used these signals to identify critical states during robot

operation, detect robot errors, and adjust robot behavior.

8.2.3 Data Collection in HRI: VR and Other Methodologies

Different kinds of HRI research methods have been used in the literature to gather

interaction data, such as in-person user studies (e.g., [94, 261, 175]), observational
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public data collections (e.g., [172, 131]), crowdsourcing studies (e.g., [41, 258, 119]),

etc. See [25] for an introduction to these methods.

We considered different ways of conducting our data collection, but ultimately

opted for gathering data with simulated human-robot interactions in VR for several

reasons. First, in contrast to real-world data collection, simulation facilitated query-

ing humans about their perceptions of robot performance during interactions and

resulted in fewer negative consequences for interrupting the navigation task. This

is illustrated in Figure 8.2. In lab studies, for instance, surveys that gather general

perceptions of a robot are typically administered at the end of interactions to avoid

interrupting the natural flow of events [307], which can cause unintended effects on

collaborative tasks and interactants. In VR simulations, however, we can gather

feedback in situ. We can freeze time during human-robot interactions, query a par-

ticipant about their perceptions of robot performance through the VR display, and

then resume the simulation as if the interruption had not occurred.

Second, we started our research by utilizing VR because simulations made inter-

actions safer in contrast to those in the real-world. The reason is that we wanted

to expose participants not only to good robot navigation behavior, but also to bad

behavior. This was key for inducing a wide range of perceptions about robot per-

formance during data collection and, thus, capturing varied implicit feedback. Prior

work has used simulations in HRI for safety reasons as well [180, 115].

Third, in contrast to crowdsourcing data collection procedures, our in-person data

collection reduced unrelated participant distractions [38] and minimized potential

issues with participants’ internet speed [118, 271]. Early in our research, we considered

using interactive surveys [271] for our data collection while capturing implicit feedback

signals through the webcams of remote participants (e.g., as in [46]). However, after

testing both this setup and VR, we thought that the increased level of immersion

afforded by VR was important to gather naturalistic feedback.
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While we opted for using simulations in our work, they are not without limitations.

In particular, simulations can result in a sim-to-real gap, as discussed before in HRI

and other robotics areas (e.g., [32, 66, 65, 11, 158, 108]). This gap can emerge in HRI

because of differences in physics between simulation and the real-world as well as the

human-robot interactions in simulation not reflecting the real-world experience [108].

Indeed, prior work suggests that virtual robots may be perceived as more discomfort-

ing than real robots [158]. Thus, towards the end of this paper, we explored applying

the insights from our work with VR data to a real-world demonstration, paving the

path towards predicting perceptions of robot performance in real-world application

scenarios. Being able to make such predictions opens up doors for adapting robot

behavior to better align with human desires (e.g., by treating the predicted human

perceptions as a reward signal in reinforcement learning [18]).

8.3 Problem Statement & Research Questions

We study if a person’s perceptions of a robot’s performance can be predicted using

observations of their interaction in dynamic tasks involving navigation. Specifically,

we aim to learn a mapping from a sequence of observations to an individual’s reported

perceptions at the end of the sequence (as in Fig. 8.2b). We consider multiple robot

performance dimensions on a 5-point scale, as detailed later in Section 8.4.

Consider a dataset of observations and performance labels, D = {(oi1:T , yi)}, where

o1:T is an observation sequence of length T , y is a performance rating given by a

robot user at the end of the sequence, and i identifies a given data sample. We

emphasize predicting a person’s perceptions of a robot by considering observations of

their implicit feedback. Thus, the observations oit include features that describe the

person’s non-verbal behavior, such as their motion, gaze, and facial expressions. Also,

the observations include features that describe the spatial behavior of all the agents
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in the environment, the navigation task, and the space occupied by static objects.

Given this data, we investigate three fundamental research questions:

1. How well can human observers predict a user’s perceptions of robot

performance? By answering this question, we obtain a human baseline for

learning a function f : O1:T → Y , where O is the observation space and Y is

performance. Also, through this question, we study the impact of two types

of observations in the prediction task: observations that describe fine-grained

facial expressions for a robot user and other observations about the user, the

robot, and their environment. As mentioned earlier, observations of fine-grained

expressions have gained popularity in recent work to infer human perceptions of

an agent’s behavior [71, 46, 307, 240]. Other observations (e.g. body motion and

nearby static obstacles) can be more easily computed in real-world navigation

tasks, but their usefulness on a robot’s ability to infer users’ perceptions of their

performance is less understood.

2. Can machine learning methods predict perceptions of robot perfor-

mance as well as humans? Ultimately, we are interested in bringing us

forward to a future where machine learning models facilitate evaluating robot

performance at scale, without having to necessarily ask users all the time for

explicit feedback (as in the Deployment Step of Fig. 8.2b). Thus, we evaluate

various machine learning models to approximate the function f , as defined for

the prior question.

3. How well can machine learning models generalize to unseen users?

In future robot deployments, a robot may interact with completely new users.

Thus, we analyze the performance of various machine learning models in pre-

dicting perceptions of robot performance according to users for whom the model

had no data at training time.
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We study the above questions using data from SEAN-VR [308], as described in

the next two sections. Later, in Section 8.5, we leverage our findings in VR to create a

real-world demonstration through which we investigate predicting human perceptions

of robot performance in two university environments.

8.4 Data Collection with SEAN and VR

For our VR data collection, we leveraged the SEAN 2.0 simulator, introduced in

Chapter 4 [273]. SEAN 2.0 integrates with the Robot Operating System (ROS) [212]

and supports Virtual Reality via the SEAN-VR Extension [308]. Participants used

a Vive Pro Eye VR device to control an avatar in a warehouse (as in Fig. 8.1(a)).

The VR headset captured implicit signals from the participants, like eye and lip

movements.

During data collection, the participants had to follow a Fetch robot that guided

them to a destination that was unknown to them a priori but was marked by a red

cross on the ground. Fig. 8.1(b) shows a first-person view of the simulation during

robot-guided navigation. The Fetch robot was controlled with ROS in SEAN. The

environment contained other algorithmically controlled pedestrians and warehouse

obstacles provided by SEAN 2.0.

The participants provided ratings of robot performance through the simulation’s

VR interface. The frame rate of the rendering of the virtual environment in the par-

ticipants’ first-person view in VR was over 30 frames per second. Our data collection

protocol, described below, was approved by our local Institutional Review Board and

refined via pilots.
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8.4.1 Participants

We recruited 60 participants using flyers and by word of mouth. They were at least 18

years old, fluent in English, and had normal or corrected-to-normal vision. Overall,

19 participants identified as female, 40 as male, and 1 as non-binary or third gender.

Most of them were university students, and their ages ranged from 18 to 43 years old.

Participants were somewhat familiar with robots, as indicated by a mean rating of

M = 4.20 (with standard error SE = 0.18) on a 7-point Likert responding format (1

being lowest). Yet, they were somewhat unfamiliar with VR (M = 3.72, SE = 0.20).

No participant had prior experience with SEAN or social robot navigation in VR.

8.4.2 Data Collection Procedure

Protocol: A data collection session took place as follows. First, the participant pro-

vided demographic data. Second, the experimenter introduced the robot, explained

the navigation task in which the participant was to follow the robot, and demon-

strated how to use the VR device to control their avatar in SEAN and label robot

performance. Third, the participant experienced four navigation tasks with the robot,

each with a particular starting position and destination. For consistency, the pedes-

trians were controlled using the same behavior graph controller provided in SEAN

2.0 [273], and the robot used the same navigation logic across the tasks.

In each task, the robot guided the participant to the destination and repeatedly

changed its behavior (as further detailed below). Importantly, the interaction was

paused before and after each behavior change took place, at which point the par-

ticipant was asked to evaluate the robot’s most recent navigation performance. A

typical data collection session was completed in 45 minutes to 1 hour. Participants

were compensated US$15 for their time.

Robot Behaviors: During a navigation task, the robot switched between one of

these three types of behavior:
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1. Nav-Stack. The robot navigated efficiently to the destination based on the path

planned by the ROS Navigation Stack with social costs [162]. The planned

paths generally minimized navigation time while avoiding collisions and invading

personal space. This behavior lasted 40 seconds.

2. Spinning. The robot rotated at its current position, which we expected to be

perceived as if the robot was confused. This behavior lasted 20 seconds. It

was implemented by sending angular velocity commands to the robot’s motion

controller.

3. Wrong-Way. The robot moved in the wrong direction, away from the task’s des-

tination, effectively making a mistake during navigation. This behavior lasted

20 seconds and was implemented using the Navigation Stack with social costs

as well, but with an incorrect navigation goal.

Unbeknownst to the participants, the robot switched to Nav-Stack behavior after

Spinning or Wrong-Way during navigation. It randomly switched to Spinning or

Wrong-Way after finishing Nav-Stack. The design was intended to maintain a con-

sistent rate of sub-optimal behavior and avoid user boredom or significant confusion,

which can be caused by more stochastic behavior patterns that are hard for partici-

pants to reason about. We expected the behaviors to elicit both positive and negative

views of the robot, leading to a large variety of non-verbal reactions and perceptions

of robot performance.

Perceptions of Robot Performance: During a navigation task, we paused the

interaction at 4 seconds before, and at 8 seconds after the robot switched between

behaviors. The elapsed time for the latter pause was longer in order to give people

enough time to experience the latest robot behavior.

As shown in the supplementary video, perceptions of robot performance were

provided through an interface embedded in the simulation. The interface asked the
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participants to indicate their perceptions about the robot’s most recent performance

in regard to: 1) “how competent was the robot at navigating,” 2) “how surprising

was the robot’s navigation behavior,” and 3) “how clear were the robot’s intentions

during navigation.” Participants provided ratings for these three dimensions of robot

performance on a 5-point Likert responding format, e.g., with 1 being “incompetent”,

2 being “somewhat incompetent”, 3 being “neither competent nor incompetent”, 4

being “somewhat competent”, and 5 being “competent”.

8.4.3 Observations

We organized observations of human-robot interactions, as recorded in SEAN-VR

[308], into the features described below. More details about these features are pro-

vided in the Appendix.

Participants’ Facial Expression Features: We captured the participants’ eye and

lip movements, as well as their gaze through the VR headset using the VIVE

Eye and Facial Tracking (SRanipal) SDK. The eye and lip movements corre-

sponded to 73 features that described the geometry of the face through blend

shapes. The gaze was a 3D vector providing the direction of gaze of the person

relative to their face.

Spatial Behavior Features: During navigation, we captured the poses of the robot,

the participant, and the other automatically-controlled avatars on the ground

plane of the scene. Then, we computed the poses of the avatars relative to the

robot, considering only those within a 7.2m radius, as this region is typically

considered a robot’s public space [101, 233, 121]. Each of the features were

(x, y, θ) tuples with x, y being the position and θ the body orientation (yaw

angle) relative to a coordinate frame attached to the robot.

Goal Features: A navigation task had an associated destination or goal that the
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robot had to reach. We converted the goal pose in a global frame in the ware-

house to a pose in a coordinate frame attached to the robot. This pose described

the robot’s proximity and relative orientation to its destination.

Occupancy Features: During navigation, the robot localized [96] against a 2-Dimensional

(2D) map of the warehouse. We used a cropped section of the map around the

robot (of 7.2m × 7.2m) to describe the occupancy of nearby space by static

objects.

8.4.4 Perceived Robot Performance

Perceptions of robot performance were as expected: ratings for competence and clear

intention were generally higher for Nav-Stack than for Spinning and Wrong-Way,

while the latter two tended to be more surprising than the former. Pairs of perfor-

mance dimensions were significantly correlated with absolute Pearson r-values greater

than 0.6. An exploratory factor analysis suggested that the dimensions could be com-

bined into one performance factor (which explained 77% of the variance).

Using the features described before and the perceptions of robot performance

provided by the participants, we created a dataset of paired observation sequences

and target performance values. We further refer to this data as the SEAN virTual

rObot GuidE with impliciT Human fEedback and peRformance Dataset (SEAN TO-

GETHER Dataset). As described below, we used this dataset to investigate the

research questions in Section 8.3.

8.4.5 How Well Can Human Observers Predict a User’s Per-

ceptions of Robot Performance?

To better understand the complexity of inferring perceptions of robot performance,

we evaluated how well human annotators could solve the prediction problem. To this
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end, we administered an online survey through Prolific,† a platform for human data

collection and online research studies. In our survey, human annotators observed

visualizations of observations in our SEAN TOGETHER Dataset. Then, they tried

to predict performance ratings provided by the people who followed the robot.

Method: For the survey, we randomly selected 2 data samples from each of the 60

participants in our data collection, with one gathered before and the other gathered

after the robot’s behavior changed. The observations in each sample corresponded

to an 8-second 5-hz window of features right before the corresponding performance

label was provided.

As shown in Fig. 8.3, data samples were visualized in two ways:

1. Facial Rendering. We created a human face rendering in Unity by replaying

the facial expression features on an SRanipal compatible avatar, as shown in

Fig. 8.3 (right). This visualization was motivated by the use of facial expressions

in prior work on implicit feedback (e.g., [71]).

2. Navigation Rendering. We created a plot of features that described the navi-

gation behavior of the robot and the avatars in the simulation. The plot showed

features that, using existing perception techniques, may be easier to estimate

than facial features in real-world deployments. These features are the spatial

behavior features, the robot’s goal location, the occupied space near the robot,

and the gaze direction of the participant – the last of which could be approxi-

mated using an estimate of the person’s head orientation [197]. Because prior

work suggests that it is easier to make sense of implicit human feedback in con-

text [46], the plot was always centered on the robot, making its surroundings

always visible as in Fig. 8.3 (left).

We used the visualizations to create three annotation conditions that helped un-

derstand the value of different features: 1) Nav.-Only : annotators only saw the
†www.prolific.co
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Figure 8.3: A data sample from the Nav.+Facial condition. The left plot shows gaze,
spatial behavior, goal, and occupancy features: is the robot’s pose; is the pose
of the participant following the robot during the VR interaction; indicates the gaze of
the participant; are the poses of algorithmically controlled avatars; is the destination
position that the robot navigated towards; and occupancy in the environment is indicated
by black pixels (occupied) and white pixels (unoccupied). The right visualization shows a
rendering of the facial expression features of the participant.

navigation rendering (e.g., as in the left image of Fig. 8.4), and then completed the

annotation; 2) Facial-Only : annotators only saw the facial rendering (e.g., as in the

right image of Fig. 8.4), and then completed the annotation; and 3) Nav.+Facial :

annotators saw the navigation rendering in the first page, then the facial rendering in

the second page, and finally, saw a video with both visualizations next to each other

(as in Fig. 8.3) in the last page and completed the annotation.

Each of the data samples was annotated by 10 unique people in each condition.

The annotators were instructed to predict how the participant who controlled the

avatar that followed the robot perceived the robot’s performance. The samples they

annotated were presented in random order. Each annotator was paid US$7.50 for

approximately 30 min of annotation time. To encourage high-quality annotations, we

also gave them a bonus of US$0.125 for each correct prediction that they made.

Annotators: We recruited a total of 100 annotators. Thirty-five of them identified

as female, 60 as male, and 5 as non-binary or third gender. Ages ranged from 18 to

75 years old. Annotators indicated similar familiarity with robots (M = 4.12, SE =

0.14) as the data collection participants, though the annotators were slightly more

familiar with VR (M = 4.50, SE = 0.16). See the Appendix for details on annotator
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Figure 8.4: Layout of the interfaces used for video annotation for the human baseline. Top:
Layout used for the Nav.-Only annotation condition, showing the navigation rendering on
the left, and questions on the right. Bottom: Layout for the Facial.-Only condition.
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Figure 8.5: Errors for annotators’ predictions by Annotation Conditions (left) and Be-
fore/After Robot Behavior Change (right). (**) and (*) denote p < 0.0001 and p < 0.05,
respectively.

reliability.

Results: We used linear mixed models estimated with REstricted Maximum Like-

lihood (REML) [199, 242] to analyze errors in the predictions for each performance

dimension. Our independent variables were Before/After Robot Behavior Change

(Before, After) and Annotation Condition (Facial-Only, Nav.-Only, Nav.+Facial).

Also, we considered Annotator ID as a random effect because annotators provided

predictions for multiple data samples. Our dependent variables were the absolute

error between an annotator’s prediction and the performance rating in our SEAN

TOGETHER Dataset.

We found that the Annotation Condition had a significant effect on the absolute

error for Competence, Surprise, and Intention (p < 0.0001 in all cases). As in Figure

8.5 (left), Tukey HSD post-hoc tests showed that for Competence and Surprise, the

errors for Nav.+Facial and Nav.-Only were significantly lower than Facial-Only, yet

the difference between the former two conditions was not significant. For Intention,

all conditions led to significantly different errors. Nav.+Facial resulted in the lowest

error, followed by Nav.-Only and then Facial-Only. These results suggest that facial

expressions provide information about perceptions of robot performance although,

more generally, the features used to create the Navigation Renderings seemed to be

the most critical for these predictions.

Before/After Robot Behavior Change had a significant effect on the prediction

errors for Competence and Intention (p < 0.0001 in both cases). As in Figure 8.5
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Table 8.1: Machine learning methods and human annotation (HA) performance predicting
Competence, Surprise, and Intention. Methods: Random (R) sampling from the distribution
of labels in the training set, Random Forest (RF), Multi-Layer Perceptron (MLP), Graph
Neural Network (GNN), and Transformer (T). Arrows indicate that higher (↑) and lower
(↓) results are better. Cells with (-) do not have results because a GNN trained on facial
features only was effectively an MLP. The Best and Second results are highlighted.

F1-Score (µ± σ) ↑ Accuracy (µ± σ) ↑ Mean Absolute Error (µ± σ) ↓
Facial Nav. Nav.+Facial Facial Nav. Nav.+Facial Facial Nav. Nav.+Facial

C
om

pe
te
nc
e HA 0.16± 0.0 0.28± 0.1 0.29± 0.1 0.19± 0.1 0.40± 0.1 0.42± 0.1 1.74± 0.2 1.03± 0.3 0.99± 0.4

R 0.18± 0.0 0.19± 0.0 0.17± 0.0 0.21± 0.0 0.21± 0.0 0.20± 0.0 1.73± 0.1 1.75± 0.1 1.81± 0.1
RF 0.19± 0.0 0.37± 0.0 0.38± 0.0 0.33± 0.0 0.52± 0.0 0.52± 0.0 1.43± 0.0 0.88± 0.0 0.82± 0.0

MLP 0.23± 0.0 0.29± 0.1 0.25± 0.1 0.28± 0.0 0.48± 0.0 0.44± 0.1 1.66± 0.1 1.07± 0.3 1.19± 0.4
GNN - 0.31± 0.1 0.33± 0.0 - 0.43± 0.1 0.39± 0.1 - 1.22± 0.3 1.04± 0.0

T 0.21± 0.0 0.33± 0.0 0.33± 0.0 0.30± 0.0 0.43± 0.0 0.41± 0.1 1.58± 0.1 0.97± 0.0 0.95± 0.0

Su
rp
ri
se

HA 0.18± 0.0 0.24± 0.1 0.25± 0.1 0.20± 0.1 0.30± 0.1 0.32± 0.1 1.53± 0.3 1.19± 0.2 1.12± 0.2
R 0.19± 0.0 0.21± 0.0 0.17± 0.0 0.20± 0.0 0.21± 0.0 0.18± 0.0 1.64± 0.1 1.60± 0.1 1.68± 0.1

RF 0.29± 0.0 0.38± 0.0 0.34± 0.0 0.30± 0.0 0.40± 0.0 0.34± 0.0 1.30± 0.0 0.93± 0.0 0.98± 0.0
MLP 0.24± 0.0 0.26± 0.1 0.24± 0.1 0.25± 0.0 0.30± 0.0 0.29± 0.1 1.23± 0.1 1.12± 0.2 1.08± 0.1
GNN - 0.29± 0.0 0.27± 0.0 - 0.30± 0.0 0.28± 0.0 - 1.13± 0.1 1.07± 0.1

T 0.27± 0.0 0.29± 0.0 0.32± 0.1 0.28± 0.0 0.31± 0.0 0.33± 0.1 1.37± 0.1 1.07± 0.1 1.04± 0.1

In
te
nt
io
n

HA 0.18± 0.0 0.25± 0.1 0.30± 0.1 0.21± 0.1 0.37± 0.2 0.41± 0.1 1.64± 0.2 1.19± 0.4 1.07± 0.2
R 0.21± 0.1 0.19± 0.0 0.17± 0.0 0.23± 0.1 0.22± 0.0 0.19± 0.0 1.70± 0.1 1.73± 0.1 1.80± 0.1

RF 0.28± 0.0 0.28± 0.0 0.24± 0.0 0.37± 0.0 0.43± 0.0 0.41± 0.0 1.45± 0.0 1.13± 0.0 1.14± 0.0
MLP 0.27± 0.0 0.26± 0.1 0.22± 0.0 0.31± 0.0 0.41± 0.1 0.39± 0.1 1.86± 0.1 1.31± 0.3 1.51± 0.5
GNN - 0.28± 0.0 0.29± 0.0 - 0.37± 0.0 0.35± 0.0 - 1.32± 0.1 1.25± 0.1

T 0.24± 0.0 0.29± 0.1 0.32± 0.0 0.33± 0.0 0.41± 0.0 0.40± 0.0 1.63± 0.1 1.21± 0.1 1.20± 0.1

(right), the error was significantly lower for samples Before a behavior change than

for samples After a change for these performance dimensions. We suspect this was

because the robot sometimes demonstrated two behaviors in the samples collected

After a behavior change, but in the case of Before behavior change, the robot only

showed one behavior, making these data samples more consistent and easier to reason

about.

Table 8.1 shows the F1-Scores for the annotator predictions (see HA rows). The

low F1 scores suggest that correctly predicting perceptions of robot performance on

a 5-point responding format was difficult for humans. Despite this, we suspected

that humans could do a more reasonable job at distinguishing perceptions of poor

robot performance from other perceptions. If this was the case, then this could

open up doors in the future to using this binary signal (instead of the more fine-

grained feedback) as a reward signal to adapt robot behavior in navigation tasks,

e.g., in line with [140, 165]. Thus, we transformed the ground truth ratings from
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Figure 8.6: Mean Absolute Errors (MAE) of human annotation and Random Forest (RF)
results over 10-minute intervals of the data collection sessions. MAE was computed for
all data samples in each interval, and then the average and standard errors of MAE were
calculated considering the performance of the 10 unique annotators (for human annotation
results in (a)–(c)) or the 10 Random Forest models trained with different seeds in Table 8.1
(RF results in (d)–(f)).

our data collection to binary values, one corresponding to low performance (e.g., 1-

2 ratings for competence) and another to medium-to-high performance (3-5 ratings

for competence). Also, we transformed the annotators’ predictions similarly. This

led to F1 scores of 0.69 for Competence, 0.64 for Surprise, and 0.69 for Intention.

As expected, human annotators were better at telling the directionality of robot

performance ratings than at predicting their exact magnitude.

Finally, we investigated the performance of human annotations over the span of

data collection because prior work suggests that the expressiveness of people en-

gaged in human-robot interactions can change over time [47], e.g., potentially due to

changes in their expectations about the robot or due to fatigue. Figures 8.6(a)–(c)

show the evolution of mean absolute errors for the human annotators’ predictions

over 10-minute intervals of interaction, considering each performance dimension. In

general, human performance was very stable, suggesting no major bias over time
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in participants’ spatial behavior or facial expressions. Interestingly, the results also

suggested that improvements in performance with an individual feature did not nec-

essarily translate to improvements on the Nav.+Facial condition. Humans may have

combined the information from the different implicit feedback modalities in subtle

ways when making their predictions about how participants in VR perceived the

robot.

8.4.6 Can Machine Learning Methods Predict Perceptions of

Robot Performance as Well as Humans?

We compared human prediction performance with a variety of classifiers, including a

random forest and neural networks.

Method: Machine learning (ML) models were evaluated on the same samples shown

to the human annotators (n = 120). The rest of the data was used for training (n =

2280) and validation (n = 569). We trained one model for each combination of feature

sets shown to the human annotators (Facial-Only, Nav.-Only, and Nav.+Facial).

The Nav. feature set included occupied space near the robot, which we encoded

using a ResNet-18 representation [103]. We repeated training for each model 10

times with varying random seeds. The Random Forest (RF) used 100 trees, and

the depth was grown until leaves had less than 2 samples. The neural networks

had a number of parameters on the same order of magnitude: 5.4× 106 for a Multi-

Layer Perceptron (MLP), 2.1× 106 for a message-passing Graph Neural Network

(GNN) [27], and 6.5× 106 for a Transformer (T) [279]. Networks were trained using

minibatch gradient descent with the Adam optimizer and cross-entropy loss. Learning

rate, batch size, and dropout were chosen using grid search with validation-based early

stopping [210]. We also compared all these models with a random sampling baseline.

Results: As is shown in Table 8.1, ML models outperformed both human-level perfor-

mance and random baseline in all cases when measured via F1-Score. When measured
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using Accuracy and Mean Absolute Error, ML models performed the best, except for

Intention when using Nav.+Facial features. These outcomes indicate that our im-

plicit feedback data contained useful information that can be leveraged by ML models

to predict users’ perceptions of robot performance. Further, ML models trained with

Nav.-Only and Nav.+Facial features outperformed those trained with Facial-Only

features. This finding aligns with our observation in Section 8.4.5 on the criticality

of the Nav. features in comparison to the Facial features on performance prediction.

Figures 8.6(d)–(f) show the evolution of mean absolute errors for the Random

Forest model, which generally performed the best, over 10-minute intervals of in-

teraction during the data collection. Similar to the results from human annotators

(Figures 8.6(a)–(c), Sec. 8.4.5), the error for the RF model did not fluctuate drasti-

cally, although the performance for Intention prediction with Nav. and Nav.+Facial

features decreased in the last two time intervals of data collection (having higher

mean absolute error). The decrease in performance could be the result of a distri-

bution shift, especially in the last interval, which had the fewest number of samples

because not all interactions took the full 40 minutes. Also, a good proportion of the

samples in the last time interval showed the end of navigation tasks, at which point

the participants could have been more sensitive to robot navigation in the wrong

direction. Indeed, there was a higher proportion of lower ratings for Intention in the

last interval than in the other intervals, as shown in the Appendix.

To better understand differences in the prediction performance between ML and

human annotators, we first identified the examples annotated by humans for which

there was a difference greater than 1 in Mean Absolute Error between human an-

notators and the RF model that tended to perform best. Then, we inspected the

8-second navigation renderings of these data examples, as in Fig. 8.4 (left). Among

examples where the RF model performed better than humans, 64% exhibited a major

behavior pattern for the robot that persisted despite minor deviations. For example,
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the robot navigated effectively to the goal most of the time, but was occasionally

blocked and had to move around the obstacles. We hypothesize that ML did better

in these cases because machine learning can leverage regularities in the data when

making predictions without potentially getting distracted with the minor deviations.

Among the examples where human annotators performed better, 68% showed the

robot exhibiting more than one behavior (Nav-Stack, Spinning, or Wrong-Way) or

the interaction involved unconventional reactions from humans, such as people in-

terfering in the navigation task. We suspect that humans were better in these cases

because they can leverage their prior knowledge about the world to better reason

about uncommon variations in the data. For the RF, uncommon observations can be

out-of-distribution samples that result in more prediction errors, especially consider-

ing the limited size of our dataset.

Taken together, these results motivated us to focus the analysis in the next section

on the aggregate, overall results rather than the interval-based results.

8.4.7 Can Machine Learning Generalize to Unseen Users?

We investigated how well learning models could predict performance by a user whose

data was held out from training.

Method: We used the models and training scheme from Section 8.4.6 with all fea-

Multiclass Binary Binary BinaryMulticlass Multiclass
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Figure 8.7: ML models trained on Nav.+Facial features using leave-one-out cross-
validation and evaluated on the held-out participant’s data. F1-Scores are computed over 5
classes (Multiclass) and 2 classes (Binary). Error bars represent the standard errors calcu-
lated from the F1-Scores per leave-one-out fold. See the text for details.
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tures (Nav.+Facial), but split the data using leave-one-out cross-validation. For each

fold, the data for one participant was used as the test set, and the remaining exam-

ples were split between training (80%) and validation (20%). We searched for new

hyperparameters and computed results both on 5-classes and on binary classification.

Binary targets and prediction labels were computed as in Section 8.4.5.

Results: Figure 8.7 reports F1-Scores over all folds. The models generalized to

unseen people with only a slight reduction in performance in comparison to Table

8.1. Also, the average F1-Score across all performance dimensions improves from 0.25

in the multiclass case to 0.62 in the binary case. This makes the ML predictions more

usable in practice. For example, in the future, we envision deploying the trained ML

on new users (as in Fig. 8.2b) in order to detect low robot performance. This could be

an indication that the robot made a mistake, triggering interaction recovery behaviors

like apologies or explanations [257], which could increase trust in the system [54].

8.5 Real-World Demonstration

To investigate whether we could predict human perceptions of robot performance

in other, more realistic scenarios than those observed in our VR data collection, we

conducted a real-world demonstration with a modified Pioneer 3-DX mobile base.

More specifically, we conducted a data collection with the mobile robot in two semi-

public indoor environments of Yale University, and analyzed how well a random forest

model could predict human perceptions of robot performance in the real-world setup.

This real-world data collection, as further described below, was approved by our local

Institutional Review Board.

The system that we built for real-world data collection was designed in consid-

eration of: 1) we wanted to induce naturalistic interactions between the robot and

pedestrians; and 2) we wanted to support the same data collection protocol used
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Figure 8.8: Real-world data collection in two indoor spaces of Yale University. The orange
box highlights the follower, i.e., the person that followed the robot during navigation tasks.
Other people could pass by the follower and the robot as in the right image during data
collection. The robot had lights to indicate when it was navigating (green, right image) or
had paused navigation (red, left image).

with SEAN, as in Section 8.4.2. Therefore, we did not recruit participants prior

to the data collection. Instead, we operated the robot and, as pedestrians walked

nearby, we asked them if they would be willing to follow the robot for a short period

and answer brief surveys. In total, 45 pedestrians agreed to follow the robot for this

demonstration.

Mobile Robot: The Pioneer 3-DX robot is a differential-drive mobile base and,

thus, it moves in a similar way to the Fetch robot used in our VR data collection.

We added to the Pioneer robot lights that illuminated green to indicate that it was

navigating towards a location, and red to indicate that it had paused navigation.

Over the Pioneer base, we built a frame that held a robotic screen face (similar

to [280, 154]) on the very top of the robot, which allowed participants to easily

distinguish the front of the platform. The frame also held two Kinect Azure RGB-D

cameras right below the robot’s head. Each camera had a 120-degree field of view.

One was pointed forward and the other was pointed backwards, which allowed the

robot to track people in front and behind it using the Kinect SDK. Additionally, the

bottom section of the frame held a 2D LMS-100 Sick LiDAR and a gaming laptop

with an Intel Core i7-8750H CPU, 32 GiB of RAM, and an Nvidia GeForce GTX

1070 GPU. The laptop ran the Robot Operating System to control the robot using

134



the ROS navigation stack [212] with social cost layers [162], which enabled the robot

to avoid collisions with nearby people. Fig. 8.8 and our supplementary video show

the robot in this demonstration effort.

Demonstration Protocol: We waited for pedestrians to walk by the robot in two

locations on a university campus. One location was a subterranean pedestrian tunnel

or concourse; the other one was an L-shaped entrance corridor to a building. When

pedestrians passed by, we asked them if they would be interested in following the

robot as it navigated to a nearby goal marked by a red cross on the ground. For

those who agreed, we instructed them that the robot would navigate when it showed

a green light. After short intervals of time, it would pause navigation, showing a red

light, and they would be asked a few quick questions about their perceptions of the

action that the robot just performed using a mobile device. The device showed the

same questions about robot competence, surprising behavior, and clear intent (on

a 5-point Likert responding format) as in our VR data collection. Also, the robot

navigation behaviors and the timing of questions about robot performance matched

those in Section 8.4.2.

Data: We focused on capturing Nav.-Only features (that described the navigation

behavior of the robot and humans, as in Sec. 8.4.5) for two reasons. First, our

prior results with VR data suggested facial expression features were not as critical to

make predictions over human perceptions of robot performance as the other features.

Second, facial expressions were often occluded, providing no information to the robot.

In total, we collected 235 examples from this real-world demonstration, each consisting

of Nav.-Only features and associated survey responses.‡

ML Models: Our primary aim was to understand the applicability of our approach

to infer perceptions of robot performance in the real world. However, there were

important differences in our VR and real-world data collection setups as a result of
‡The real-world data that we collected from this demonstration is available at: https:

//sean-together.interactive-machines.com/.
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Table 8.2: F1-Score (µ ± σ) for Random Forest models trained using Nav.-Only features
from either the Real -world data, or VR data considering the nearest 5 people to the robot (as
explained in Sec. 8.5) Results include multi-class classification based on the 5-point Likert
responses (Multi-cls) and binary classification (Binary). Column 1 corresponds to training
on VR data and evaluating on VR data (VR→VR), Column 2 corresponds to training on
VR data and evaluating on real data (VR→Real), and Column 3 is training and evaluating
on real data (Real→Real).

(1) VR→VR (2) VR→Real (3) Real→Real
M
ul
ti
-c
ls Competence 0.30± 0.09 0.21± 0.18 0.27± 0.35

Surprise 0.27± 0.08 0.26± 0.21 0.26± 0.27
Intention 0.26± 0.08 0.20± 0.28 0.24± 0.34

B
in
ar
y Competence 0.69± 0.10 0.56± 0.41 0.61± 0.34

Surprise 0.59± 0.18 0.58± 0.36 0.58± 0.33
Intention 0.65± 0.08 0.55± 0.40 0.60± 0.40

real-world constraints. For example, the real robot had a more limited field of view

compared to the simulation, where the ground truth motion for all people in the

environment was available. Moreover, the real-world environments were less densely

populated than simulation.

Therefore, to fairly compare our results across simulation and the real world, we

trained two types of Random Forest classifiers, given that the RF model generally

performed best in Table 8.1. One type of model was trained using VR data but we

limited the field of view of the robot to 120-degrees forward and backward, as well as

the maximum number of nearby people input to the model to five individuals. The

other type of Random Forest model (with the same parameters) was trained using

real-world data. Both types of models were trained considering 5-classes, with binary

targets and prediction tables being computed as in Section 8.4.5.

Results: Table 8.2 shows the F1-Score of models evaluated on the same type of data

they were trained on (Sim or Real). For these results, we used leave-one-person-out

cross-validation to train and evaluate generalization to new robot followers. That

is, data from one person was held out for each fold. Also, Table 8.2 shows the

performance of the model trained in simulation on real-world data. In this case, an RF
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model was trained using all the VR data from the VR→VR case, and then evaluated

on the test set for the leave-one-person-out folds for the real-world data. As one

would naturally expect based on our prior results with VR data, binary classification

resulted in higher performance than multi-class classification in all these cases.

In general, performance was higher for models trained and evaluated in simulation

(Column 1), which could be the result of having more VR data than real-world data.

The results for models trained and evaluated on real data (Column 3) were close

to those that considered simulation data only (Column 1). This suggests that our

methodology to collect real-world data and the RF model are promising for inferring

perceptions of robot performance in the real world. Finally, reasonable performance

was obtained for the model that was trained with VR data and tested on real-world

data (Column 2). This highlights the potential of sim-to-real transfer of machine

learning models trained on spatial features, as well as the potential of using our

VR data to build computational models that predict human perceptions of robot

performance in real-world interactions.

8.6 Discussion

We hope that future work leverages our findings to build effective models for map-

ping implicit human feedback to users’ perceptions of robot performance in real-

world social navigation tasks. To this end, we first recommend prioritizing robust

people tracking and pose estimation over computing fine-grained facial expressions,

especially when computational resources may be limited. Reasoning about spatial

behavior features in the context of the task can facilitate achieving reasonable pre-

diction performance with lower sensor requirements. Also, occlusions are likely more

common for facial expressions than body tracking, as we observed in our real-world

demonstration.
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Second, it is important to consider the granularity of the predictions over percep-

tions of robot performance. We began our work gathering perceptions of robot perfor-

mance on a 5-point Likert responding format, which we believed could reveal subtle

aspects of human perceptions during navigation. However, we found that predicting

perceptions of robot performance over 5 classes was challenging for both humans and

ML models. While human prediction performance could have been affected by spe-

cific details of the visualizations that we used to gather our human baseline results,

it is worth considering less granular feedback to favor prediction performance during

robot deployments. In particular, for more practical usage of human feedback, we

recommend building models that start by identifying poor robot performance (per-

forming binary classification) and then, on top of that, try to predict more granular

perceptions of robot performance.

Finally, if a robot is executing multiple behaviors, we recommend considering

whether the robot switched behaviors recently when reasoning about performance

predictions. As in our results, predicting performance recently after a behavior change

can be more difficult than before, when the behavior was more consistent.

8.6.1 Limitations

Our work has several limitations that point to interesting future directions. In par-

ticular, we obtained human baselines for prediction performance, but used only a

limited set of feature combinations that described interactions in a single VR envi-

ronment and two real-world environments. In the future, it would be interesting to

consider a broader set of feature categories in a more diverse range of environments.

For instance, future work could investigate the value of more detailed human pose

features (e.g., [310]) across a wider range of scenarios (public plazas or hospitals)

where humans may behave differently due to their activity, stress, or other factors.

Facial expressions and the nuance of human motion are challenging to capture.
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In our data collection with virtual reality, the use of VR could have biased observed

nonverbal behavior as well as human perceptions of a robot, given the way humans

provide input to the simulation via the VR device, the way the device captures their

nonverbal behavior, and the sim-to-real gap.

We were limited by the features captured by the Vive Pro Eye VR headset, which

describe the geometry of the face through blend shapes. We visualized this data

by rendering the features on a virtual avatar head, and this could have affected the

perception of subtle human facial expressions. In the future, it would be interesting

to utilize more advanced devices such as the recently released Apple Vision Pro to

create other datasets of implicit human feedback. The new Apple device can sense

faces in a way that allows rendering higher quality avatars for users, and the data it

captures could potentially improve the accuracy and robustness of ML models that

predict robot performance.

In the future, inferred performance predictions could be used to adapt robot be-

havior. For example, a robot could use binary robot performance predictions as

instantaneous rewards that guide changes in robot behavior to better align what the

robot does with human preferences [140, 165, 71]. When the predictions indicate low

robot performance or suggest drastic changes in perceptions of the robot’s behavior,

the robot could also opt for querying users explicitly about its performance to verify

the predictions. Perhaps the responses can also be used to improve the prediction

model.

8.7 Summary

This chapter contributed the SEAN TOGETHER Dataset, consisting of observations

of human-robot interactions in VR, including implicit human feedback, and corre-

sponding performance ratings in guided robot navigation tasks. Our analyses with
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VR data revealed that facial expressions can help predict perceptions of the robot, but

spatial behavior features in the context of the navigation task were more critical for

these inferences. Our experiments also demonstrated the ability of humans and ML

models to infer perceived robot performance from interaction observations. A general

trend that we observed throughout this work was that predicting the directionality

of perceptions of robot performance (as a binary classification task) was easier and,

thus, seemed more practical than predicting exact performance ratings (on a 5-point

scale).

As part of this work, we also conducted a real-world demonstration that showed

the applicability of machine learning in predicting human perceptions of a mobile

robot in indoor environments. We did not capture facial expression features for this

demonstration, but rather focused on capturing features that described the naviga-

tion behavior of the robot and humans based on our prior findings. Both the models

trained with VR data and real-world data showed promising generalization capabili-

ties when evaluated on real-world data, confirming the potential of machine learning

for predicting perceptions of robot performance from implicit feedback signals in social

robot navigation. Our datasets, accompanying analyses, and demonstration facilitate

future research on more scalable supervision of robot navigation behavior.

In the future, social robots could use implicit human feedback as supervision to

interactively improve their behavior in the future. For example, human perceptions of

robot performance predicted by machine learning models could be used as a reward

function in a reinforcement-learning setup, where the robot improves its policy to

learn how to best navigate with a user.
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Chapter 9

Discussion

This dissertation explores the exciting and critical application area of social robot

navigation, highlighting the limitations of traditional, purely objective metrics in

capturing the nuances of socially competent robot behavior. A paradigm shift in

how success is measured is necessary in order to better align the evaluation of social

robot navigation systems with human values. To this end, I propose the use of

context-aware simulation systems and subjective human feedback. Equipped with

these tools, researchers should utilize a cyclical method of system development that

relies on repeated measurement and improvement.

Motivated by the “tyranny of metrics,” we proposed a suite of systems for training

and evaluating social robot navigation in a way that is aligned with human values.

SEAN 2.0 is a simulation system designed specifically for social robot navigation,

incorporating novel components such as modeling pedestrian motion via a Behavior

Graph, formalizing social contexts, and classifying social situations. Furthermore, we

investigated how experts in social robot navigation prioritize different evaluation mea-

sures, revealing the criticality of subjective human feedback. We also addressed the

challenge of scalable data collection for human-robot interaction through web-based

interactive simulations and explored methodologies for collecting and even predicting
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human perceptions of robot performance during navigation tasks. Our work lays the

foundation for future research aimed at deploying socially competent robots that nav-

igate effectively in human-centric environments, ensuring outcomes align with human

values.

9.1 Common Themes

9.1.1 Choosing Metrics for Alignment Between Humans and

Robots

This dissertation consistently pushes for the need to rethink how to measure suc-

cess and makes the case that traditional metrics like path efficiency, time to goal,

and collision avoidance, while important, fail to capture the nuances of socially com-

petent behavior. We associate this outcome with the “tyranny of metrics,” where

optimizing for improperly chosen objectives can lead to behaviors misaligned with

human values. We conducted a study using structured interviews of experts, which

further reinforces this by revealing that while collision avoidance is universally impor-

tant, other objective measures are prioritized differently depending on the application

domain, highlighting the insufficiency of objective measures alone.

The dissertation proposes that to create truly socially competent robots, it is

essential to understand and incorporate how humans perceive robot behavior. This

theme is evident in the proposed three-pronged approach, which explicitly includes

incorporating subjective human feedback in a scalable manner. The expert interviews

revealed the critical role of subjective human feedback in evaluating social navigation.

Furthermore, the development and evaluation of the SEAN-EP system focuses on

enabling the collection of this crucial subjective human feedback data.
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9.1.2 Human-Centric Simulation

Another common theme is the role of human-centric simulation and the proposed

simulation system, SEAN, as a vital tool for safely developing, testing, and evaluating

social navigation algorithms. This dissertation introduces the preliminary SEAN and

the complete SEAN 2.0 system as a tool that can help address the challenges of

value alignment. These platforms are designed to model human behavior, formalize

social contexts, and provide a framework for evaluating robot policies in various social

situations. The development of the Behavior Graph in SEAN 2.0 as a novel method

for specifying pedestrian behavior and generating varied social situations underscores

the importance of densely populated and dynamic simulation environments filled with

virtual agents.

9.1.3 Human Feedback and Predicting Perceptions of Robot

Behavior

The dissertation also highlights the challenges and advancements in achieving scal-

able data collection of human feedback for human-robot interaction in navigation

contexts. The development of SEAN-EP is a direct response to this challenge, offer-

ing a method to deploy interactive robot simulations on the web as part of interactive

surveys to gather human feedback at scale. The investigation into whether human

perceptions differ between interactive simulations and video observations further ex-

plores methodologies for efficient and effective human feedback collection.

Finally, the dissertation looks towards the future with the theme of predicting

human perceptions of robot performance as a crucial step towards creating robots that

are inherently aligned with human values. The research on using nonverbal human

behavior (body motion, gaze, facial expressions) to predict how humans perceive a

robot’s navigation performance suggests a path towards autonomous systems that can
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understand and respond to human preferences without explicit feedback. This ability

to predict human perceptions is seen as a way to improve robot decision-making and

mitigate the risks of optimizing for metrics that are misaligned with human values.

9.2 Open Challenges

We identify several open challenges that are critical for the development of socially

competent robots, including the need for agreement among stakeholders in social

robot navigation on a summary metric for success, the need for simulation systems

that incorporate more degrees of freedom in human behavior, and the incorporation

of human feedback into learned policies.

9.2.1 Summary Metric for Success

Unlike traditional robot navigation, where success can be readily quantified by metrics

like path efficiency and collision avoidance, social navigation involves navigating in

spaces shared with humans, where success is not solely about reaching a goal but

also about doing so in a socially acceptable manner. This involves adhering to social

norms, communicating intent clearly, and avoiding discomfort or harm to people.

The multi-faceted nature of human-robot encounters contributes to this difficulty, as

researchers must consider physical safety, psychological safety, social acceptability,

and the interpretability of robot behaviors. Even seemingly straightforward terms

like “safety” can have different interpretations depending on the context.

9.2.2 Simulation Systems that Incorporate More Degrees of

Freedom in Human Behavior

Another key open challenge lies in the development of simulation systems that incor-

porate more degrees of freedom in human behavior. While simulation plays a vital
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role in the development and evaluation of social robot navigation systems, current

simulators often have limitations in the realism and variability of modeled human

behaviors. Many existing simulation frameworks for social navigation focus on basic

collision avoidance or simple, scripted pedestrian movements. However, real-world

human behavior is complex and influenced by a multitude of factors, including indi-

vidual goals, social norms, emotional states, and interactions with other people.

To develop truly socially competent robots, simulation systems need to move be-

yond these simplified models and incorporate a richer spectrum of human behaviors.

This includes modeling more nuanced social interactions like group formations, con-

versations, yielding behaviors, non-verbal communication (e.g., gaze, gestures), and

reactions to unexpected robot actions. The introduction of the Behavior Graph in

SEAN 2.0 represents a step towards addressing this challenge by providing a new

method for specifying pedestrian behavior that can lead to the emergence of more

complex and varied social encounters.

Future research should work towards creating simulation systems that can accu-

rately and efficiently model the full complexity and unpredictability of human behav-

ior in diverse social contexts. For example, simulators that incorporate more degrees

of freedom into human communication would allow nonverbal communication, such

as gestures and gaze as well as verbal communication through the integration of large

language models and text-to-speech models.

9.2.3 Incorporating Human Feedback into Learned Policies

A crucial open challenge for achieving value alignment in social robot navigation is

the effective incorporation of human feedback into learned robot policies. This disser-

tation emphasizes that subjective human perceptions are critical for evaluating and

developing socially aligned navigation strategies. Relying solely on objective metrics

can lead to robot behaviors that are technically efficient, but socially inappropri-
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ate. Therefore, integrating human feedback into the learning process is essential for

ensuring that robot policies align with human values and expectations.

We explored several approaches for collecting human feedback, including in-person

studies, video-based surveys, and interactive simulations. The development of SEAN-

EP demonstrates an approach to gathering human feedback in a scalable manner

through online interactive simulations. Furthermore, our research on predicting hu-

man perceptions of robot performance from nonverbal cues like body motion, gaze,

and facial expressions offers a potential path towards autonomous systems that can

infer human feedback implicitly.

Effectively leveraging human feedback to guide the learning of robot policies re-

mains a formidable challenge. This includes identifying how best to represent human

preferences and incorporate them into learned policies. For example, we recently pro-

posed a method for incorporating user preferences into a planning framework [187].

Future work could build on this by using inferred preferences to inform policy learning

within the planning framework. Another promising direction involves using human

feedback to design reward functions that incorporate subjective feedback. In cases

where these functions have gradients that are not useful for gradient-based optimiza-

tion, we proposed a technique that approximates the Heaviside step function and

uses a soft-set version of the confusion matrix to enable gradient-based optimiza-

tion [272]. Finally, a more general characterization of social contexts, and of user

values related to subjective human behavior, could help ensure that learned policies

generalize across diverse situations. The long-term goal of this work is to create truly

social and competent robots.
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9.3 Summary

This chapter covered the dissertation’s contributions and overarching themes. It

emphasized the need to shift from purely objective metrics towards incorporating

subjective human perceptions for evaluating social robots. We reviewed the key

contributions and common themes in this work. Finally, the chapter identifies key

open challenges for the field, namely the need for a summary metric for success,

simulation systems with more degrees of freedom in human behavior, and methods

for incorporating predictive models that are capable of predicting human feedback

into the learning of future social robot navigation policies.

Driven in a small part by this dissertation, social robots are becoming better

equipped to understand human perceptions and thereby become more closely aligned

with human values. Bridging technical innovation with the nuanced realities of social

behavior brings the field closer to a future in which robots not only move through our

shared spaces but do so with a sensitivity that earns human respect and acceptance.

The future for social robotics is bright, with exciting opportunities for innovation in

human-centric design and robot learning that place people not just as users, but as

essential collaborators in shaping socially intelligent systems.
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Chapter 10

Conclusion

This dissertation, which focused on the development of socially competent mobile

robots, proposed that traditional objective metrics alone are insufficient to capture

the nuances of social interactions that occur during robot navigation. The research

emphasized a need to move beyond objective metrics such as time to goal and collision

avoidance. Beyond these metrics, human perceptions and values should be incorpo-

rated into the design and assessment of social navigation algorithms. By focusing

on a human-centric approach, this work provides a foundation for creating robots

that can navigate and interact effectively in human-centric environments, with the

ultimate aim of aligning robotic behaviors with human values.

The results presented across this dissertation underscore the importance of con-

sidering human factors in social robot navigation. Chapter 3 introduced the design

decisions associated with building a human-centric simulator and presented the Social

Environment for Autonomous Navigation (SEAN) as a tool for developing and test-

ing social navigation algorithms. Building upon this, Chapter 4 detailed SEAN 2.0,

which formalized social situations and incorporated the Behavior Graph method of

pedestrian control, which supports dense and varied pedestrian behaviors. In combi-

nation, experiments utilizing Social Situations and the Behavior Graph demonstrated
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SEAN 2.0’s utility for training and benchmarking. Chapter 5 provided insights from

expert interviews, revealing that while collision avoidance is a near-universal prior-

ity, the importance of other evaluation measures varies across application domains.

Open-ended questions highlighted the importance of incorporating subjective human

feedback.

Further exploring the collection of human feedback, Chapter 6 presented the

SEAN Experimental Platform (SEAN-EP), a novel approach for deploying interac-

tive simulations by embedding them in surveys and deploying them on the web in

order to gather human perceptions of robots at scale. Chapter 7 compared different

methodologies for collecting human feedback, based on whether the interaction was

real or simulated, and interactive or video-based. This study highlighted that human

feedback from simulation and video studies may not always directly translate to real-

world human-robot interactions, yet interactive simulations can be a powerful tool

for rapidly gathering subjective measures.

Finally, in Chapter 8 we introduced the SEAN TOGETHER Dataset and demon-

strated that machine learning models can infer how a robot is perceived by humans

during navigation. The ability to predict human perceptions opens the door for au-

tonomous systems that can adapt their behavior in real-time to improve their social

performance based on the behaviors of nearby people.

In sum, the contributions of this dissertation point towards a future for robotics

in which socially capable robots can navigate the human-centric environments we

inhabit and interact socially with nearby people in a way that is aligned with their

values.
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